Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihwN Structured version   Visualization version   GIF version

Theorem dihwN 35596
 Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihw.b 𝐵 = (Base‘𝐾)
dihw.h 𝐻 = (LHyp‘𝐾)
dihw.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihw.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dihw.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihw.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
dihwN (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   0 (𝑓)

Proof of Theorem dihwN
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dihw.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simprd 478 . . . . 5 (𝜑𝑊𝐻)
3 dihw.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dihw.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 34302 . . . . 5 (𝑊𝐻𝑊𝐵)
62, 5syl 17 . . . 4 (𝜑𝑊𝐵)
71simpld 474 . . . . . 6 (𝜑𝐾 ∈ HL)
8 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 (𝜑𝐾 ∈ Lat)
10 eqid 2610 . . . . . 6 (le‘𝐾) = (le‘𝐾)
113, 10latref 16876 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → 𝑊(le‘𝐾)𝑊)
129, 6, 11syl2anc 691 . . . 4 (𝜑𝑊(le‘𝐾)𝑊)
136, 12jca 553 . . 3 (𝜑 → (𝑊𝐵𝑊(le‘𝐾)𝑊))
14 dihw.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
15 eqid 2610 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
163, 10, 4, 14, 15dihvalb 35544 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
171, 13, 16syl2anc 691 . 2 (𝜑 → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
18 dihw.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 dihw.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
20 eqid 2610 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
213, 10, 4, 18, 19, 20, 15dibval2 35451 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
221, 13, 21syl2anc 691 . 2 (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
23 eqid 2610 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
243, 10, 4, 18, 23, 20diaval 35339 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
251, 13, 24syl2anc 691 . . . 4 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
2610, 4, 18, 23trlle 34489 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
271, 26sylan 487 . . . . . 6 ((𝜑𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2827ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
29 rabid2 3096 . . . . 5 (𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
3028, 29sylibr 223 . . . 4 (𝜑𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
3125, 30eqtr4d 2647 . . 3 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇)
3231xpeq1d 5062 . 2 (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 }))
3317, 22, 323eqtrd 2648 1 (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   I cid 4948   × cxp 5036   ↾ cres 5040  ‘cfv 5804  Basecbs 15695  lecple 15775  Latclat 16868  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463  DIsoAcdia 35335  DIsoBcdib 35445  DIsoHcdih 35535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-disoa 35336  df-dib 35446  df-dih 35536 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator