MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latref Structured version   Visualization version   GIF version

Theorem latref 16876
Description: A lattice ordering is reflexive. (ssid 3587 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐵 = (Base‘𝐾)
latref.l = (le‘𝐾)
Assertion
Ref Expression
latref ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem latref
StepHypRef Expression
1 latpos 16873 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
2 latref.b . . 3 𝐵 = (Base‘𝐾)
3 latref.l . . 3 = (le‘𝐾)
42, 3posref 16774 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
51, 4sylan 487 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  Latclat 16868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-dm 5048  df-iota 5768  df-fv 5812  df-preset 16751  df-poset 16769  df-lat 16869
This theorem is referenced by:  latleeqj1  16886  latjidm  16897  latleeqm1  16902  latmidm  16909  olj01  33530  olm01  33541  cmtidN  33562  ps-1  33781  3at  33794  llnneat  33818  2atnelpln  33848  lplnneat  33849  lplnnelln  33850  3atnelvolN  33890  lvolneatN  33892  lvolnelln  33893  lvolnelpln  33894  4at  33917  lplncvrlvol  33920  lncmp  34087  lhpocnle  34320  ltrnel  34443  ltrncnvel  34446  ltrnmwOLD  34456  tendoidcl  35075  cdlemk39u  35274  dia1eldmN  35348  dia1N  35360  dihwN  35596  dihglblem5apreN  35598  dihmeetbclemN  35611
  Copyright terms: Public domain W3C validator