Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjmul Structured version   Visualization version   GIF version

Theorem conjmul 10621
 Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.)
Assertion
Ref Expression
conjmul (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))

Proof of Theorem conjmul
StepHypRef Expression
1 simpll 786 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → 𝑃 ∈ ℂ)
2 simprl 790 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → 𝑄 ∈ ℂ)
3 reccl 10571 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → (1 / 𝑃) ∈ ℂ)
43adantr 480 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 / 𝑃) ∈ ℂ)
51, 2, 4mul32d 10125 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = ((𝑃 · (1 / 𝑃)) · 𝑄))
6 recid 10578 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → (𝑃 · (1 / 𝑃)) = 1)
76oveq1d 6564 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
87adantr 480 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
9 mulid2 9917 . . . . . . 7 (𝑄 ∈ ℂ → (1 · 𝑄) = 𝑄)
109ad2antrl 760 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 · 𝑄) = 𝑄)
115, 8, 103eqtrd 2648 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = 𝑄)
12 reccl 10571 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (1 / 𝑄) ∈ ℂ)
1312adantl 481 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 / 𝑄) ∈ ℂ)
141, 2, 13mulassd 9942 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = (𝑃 · (𝑄 · (1 / 𝑄))))
15 recid 10578 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (𝑄 · (1 / 𝑄)) = 1)
1615oveq2d 6565 . . . . . . 7 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
1716adantl 481 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
18 mulid1 9916 . . . . . . 7 (𝑃 ∈ ℂ → (𝑃 · 1) = 𝑃)
1918ad2antrr 758 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 1) = 𝑃)
2014, 17, 193eqtrd 2648 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = 𝑃)
2111, 20oveq12d 6567 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))) = (𝑄 + 𝑃))
22 mulcl 9899 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 · 𝑄) ∈ ℂ)
2322ad2ant2r 779 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 𝑄) ∈ ℂ)
2423, 4, 13adddid 9943 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))))
25 addcom 10101 . . . . 5 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2625ad2ant2r 779 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2721, 24, 263eqtr4d 2654 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (𝑃 + 𝑄))
2822mulid1d 9936 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
2928ad2ant2r 779 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
3027, 29eqeq12d 2625 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ (𝑃 + 𝑄) = (𝑃 · 𝑄)))
31 addcl 9897 . . . 4 (((1 / 𝑃) ∈ ℂ ∧ (1 / 𝑄) ∈ ℂ) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
323, 12, 31syl2an 493 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
33 mulne0 10548 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 𝑄) ≠ 0)
34 ax-1cn 9873 . . . 4 1 ∈ ℂ
35 mulcan 10543 . . . 4 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3634, 35mp3an2 1404 . . 3 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3732, 23, 33, 36syl12anc 1316 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
38 eqcom 2617 . . . 4 ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ (𝑃 · 𝑄) = (𝑃 + 𝑄))
39 muleqadd 10550 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) = (𝑃 + 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4038, 39syl5bb 271 . . 3 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4140ad2ant2r 779 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4230, 37, 413bitr3d 297 1 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator