MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjmul Structured version   Unicode version

Theorem conjmul 10162
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.)
Assertion
Ref Expression
conjmul  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )

Proof of Theorem conjmul
StepHypRef Expression
1 simpll 753 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  ->  P  e.  CC )
2 simprl 755 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  ->  Q  e.  CC )
3 reccl 10115 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( 1  /  P
)  e.  CC )
43adantr 465 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  /  P
)  e.  CC )
51, 2, 4mul32d 9693 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  P ) )  =  ( ( P  x.  ( 1  /  P ) )  x.  Q ) )
6 recid 10122 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( P  x.  (
1  /  P ) )  =  1 )
76oveq1d 6218 . . . . . . 7  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( ( P  x.  ( 1  /  P
) )  x.  Q
)  =  ( 1  x.  Q ) )
87adantr 465 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  ( 1  /  P
) )  x.  Q
)  =  ( 1  x.  Q ) )
9 mulid2 9498 . . . . . . 7  |-  ( Q  e.  CC  ->  (
1  x.  Q )  =  Q )
109ad2antrl 727 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  x.  Q
)  =  Q )
115, 8, 103eqtrd 2499 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  P ) )  =  Q )
12 reccl 10115 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( 1  /  Q
)  e.  CC )
1312adantl 466 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  /  Q
)  e.  CC )
141, 2, 13mulassd 9523 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  Q ) )  =  ( P  x.  ( Q  x.  ( 1  /  Q
) ) ) )
15 recid 10122 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( Q  x.  (
1  /  Q ) )  =  1 )
1615oveq2d 6219 . . . . . . 7  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( P  x.  ( Q  x.  ( 1  /  Q ) ) )  =  ( P  x.  1 ) )
1716adantl 466 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  ( Q  x.  ( 1  /  Q ) ) )  =  ( P  x.  1 ) )
18 mulid1 9497 . . . . . . 7  |-  ( P  e.  CC  ->  ( P  x.  1 )  =  P )
1918ad2antrr 725 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  1 )  =  P )
2014, 17, 193eqtrd 2499 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  Q ) )  =  P )
2111, 20oveq12d 6221 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( 1  /  P
) )  +  ( ( P  x.  Q
)  x.  ( 1  /  Q ) ) )  =  ( Q  +  P ) )
22 mulcl 9480 . . . . . 6  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  x.  Q
)  e.  CC )
2322ad2ant2r 746 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  Q
)  e.  CC )
2423, 4, 13adddid 9524 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
( 1  /  P
)  +  ( 1  /  Q ) ) )  =  ( ( ( P  x.  Q
)  x.  ( 1  /  P ) )  +  ( ( P  x.  Q )  x.  ( 1  /  Q
) ) ) )
25 addcom 9669 . . . . 5  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  +  Q
)  =  ( Q  +  P ) )
2625ad2ant2r 746 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  +  Q
)  =  ( Q  +  P ) )
2721, 24, 263eqtr4d 2505 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
( 1  /  P
)  +  ( 1  /  Q ) ) )  =  ( P  +  Q ) )
2822mulid1d 9517 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
2928ad2ant2r 746 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
3027, 29eqeq12d 2476 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q
)  x.  1 )  <-> 
( P  +  Q
)  =  ( P  x.  Q ) ) )
31 addcl 9478 . . . 4  |-  ( ( ( 1  /  P
)  e.  CC  /\  ( 1  /  Q
)  e.  CC )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
323, 12, 31syl2an 477 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC )
33 mulne0 10092 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  Q
)  =/=  0 )
34 ax-1cn 9454 . . . 4  |-  1  e.  CC
35 mulcan 10087 . . . 4  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  1  e.  CC  /\  (
( P  x.  Q
)  e.  CC  /\  ( P  x.  Q
)  =/=  0 ) )  ->  ( (
( P  x.  Q
)  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( (
1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
3634, 35mp3an2 1303 . . 3  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  ( ( P  x.  Q )  e.  CC  /\  ( P  x.  Q
)  =/=  0 ) )  ->  ( (
( P  x.  Q
)  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( (
1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
3732, 23, 33, 36syl12anc 1217 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q
)  x.  1 )  <-> 
( ( 1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
38 eqcom 2463 . . . 4  |-  ( ( P  +  Q )  =  ( P  x.  Q )  <->  ( P  x.  Q )  =  ( P  +  Q ) )
39 muleqadd 10094 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  =  ( P  +  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4038, 39syl5bb 257 . . 3  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4140ad2ant2r 746 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4230, 37, 413bitr3d 283 1  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648  (class class class)co 6203   CCcc 9394   0cc0 9396   1c1 9397    + caddc 9399    x. cmul 9401    - cmin 9709    / cdiv 10107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator