Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflf Structured version   Visualization version   GIF version

Theorem cnflf 21616
 Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
Distinct variable groups:   𝑥,𝑓,𝑋   𝑓,𝑌,𝑥   𝑓,𝐹,𝑥   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥

Proof of Theorem cnflf
StepHypRef Expression
1 cncnp 20894 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2 cnpflf 21615 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
323expa 1257 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
43adantlr 747 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
5 simplr 788 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋𝑌)
65biantrurd 528 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
74, 6bitr4d 270 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
87ralbidva 2968 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
9 eqid 2610 . . . . . . . . . . . 12 𝐽 = 𝐽
109flimelbas 21582 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 𝐽)
11 toponuni 20542 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1211ad2antrr 758 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
1312eleq2d 2673 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝑋𝑥 𝐽))
1410, 13syl5ibr 235 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑋))
1514pm4.71rd 665 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ (𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓))))
1615imbi1d 330 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ((𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
17 impexp 461 . . . . . . . 8 (((𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
1816, 17syl6bb 275 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
1918ralbidv2 2967 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
2019ralbidv 2969 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
21 ralcom 3079 . . . . 5 (∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
2220, 21syl6bb 275 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
238, 22bitr4d 270 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
2423pm5.32da 671 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
251, 24bitrd 267 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∪ cuni 4372  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  TopOnctopon 20518   Cn ccn 20838   CnP ccnp 20839  Filcfil 21459   fLim cflim 21548   fLimf cflf 21549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-topgen 15927  df-fbas 19564  df-fg 19565  df-top 20521  df-topon 20523  df-ntr 20634  df-nei 20712  df-cn 20841  df-cnp 20842  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554 This theorem is referenced by:  cnflf2  21617  flfcntr  21657  fmcncfil  29305
 Copyright terms: Public domain W3C validator