Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsms Structured version   Visualization version   GIF version

Theorem cmsms 22953
 Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cmsms (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp)

Proof of Theorem cmsms
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2610 . . 3 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
31, 2iscms 22950 . 2 (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺))))
43simplbi 475 1 (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977   × cxp 5036   ↾ cres 5040  ‘cfv 5804  Basecbs 15695  distcds 15777  MetSpcmt 21933  CMetcms 22860  CMetSpccms 22937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-res 5050  df-iota 5768  df-fv 5812  df-cms 22940 This theorem is referenced by:  cmsss  22955  cmetcusp1  22957  rlmbn  22965  rrhcn  29369  dya2icoseg2  29667  sitgclbn  29732
 Copyright terms: Public domain W3C validator