Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp1 Structured version   Visualization version   GIF version

Theorem cmetcusp1 22957
 Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
cmetcusp1.x 𝑋 = (Base‘𝐹)
cmetcusp1.d 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
cmetcusp1.u 𝑈 = (UnifSt‘𝐹)
Assertion
Ref Expression
cmetcusp1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)

Proof of Theorem cmetcusp1
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cmsms 22953 . . . 4 (𝐹 ∈ CMetSp → 𝐹 ∈ MetSp)
2 msxms 22069 . . . 4 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
31, 2syl 17 . . 3 (𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp)
4 cmetcusp1.x . . . 4 𝑋 = (Base‘𝐹)
5 cmetcusp1.d . . . 4 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
6 cmetcusp1.u . . . 4 𝑈 = (UnifSt‘𝐹)
74, 5, 6xmsusp 22184 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
83, 7syl3an2 1352 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
9 simpl3 1059 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑈 = (metUnif‘𝐷))
109fveq2d 6107 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (CauFilu𝑈) = (CauFilu‘(metUnif‘𝐷)))
1110eleq2d 2673 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))))
12 simpl1 1057 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑋 ≠ ∅)
134, 5cmscmet 22951 . . . . . . . . 9 (𝐹 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
14 cmetmet 22892 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
15 metxmet 21949 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1613, 14, 153syl 18 . . . . . . . 8 (𝐹 ∈ CMetSp → 𝐷 ∈ (∞Met‘𝑋))
17163ad2ant2 1076 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
1817adantr 480 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpr 476 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑐 ∈ (Fil‘𝑋))
20 cfilucfil4 22926 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2112, 18, 19, 20syl3anc 1318 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2211, 21bitrd 267 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFil‘𝐷)))
23 eqid 2610 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2423iscmet 22890 . . . . . . . . . . 11 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
2524simprbi 479 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
2613, 25syl 17 . . . . . . . . 9 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
27 eqid 2610 . . . . . . . . . . . . . 14 (TopOpen‘𝐹) = (TopOpen‘𝐹)
2827, 4, 5xmstopn 22066 . . . . . . . . . . . . 13 (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
293, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ CMetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
3029oveq1d 6564 . . . . . . . . . . 11 (𝐹 ∈ CMetSp → ((TopOpen‘𝐹) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
3130neeq1d 2841 . . . . . . . . . 10 (𝐹 ∈ CMetSp → (((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3231ralbidv 2969 . . . . . . . . 9 (𝐹 ∈ CMetSp → (∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3326, 32mpbird 246 . . . . . . . 8 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3433r19.21bi 2916 . . . . . . 7 ((𝐹 ∈ CMetSp ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3534ex 449 . . . . . 6 (𝐹 ∈ CMetSp → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
36353ad2ant2 1076 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3736adantr 480 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3822, 37sylbid 229 . . 3 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3938ralrimiva 2949 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
404, 6, 27iscusp2 21916 . 2 (𝐹 ∈ CUnifSp ↔ (𝐹 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)))
418, 39, 40sylanbrc 695 1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∅c0 3874   × cxp 5036   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TopOpenctopn 15905  ∞Metcxmt 19552  Metcme 19553  MetOpencmopn 19557  metUnifcmetu 19558  Filcfil 21459   fLim cflim 21548  UnifStcuss 21867  UnifSpcusp 21868  CauFiluccfilu 21900  CUnifSpccusp 21911  ∞MetSpcxme 21932  MetSpcmt 21933  CauFilccfil 22858  CMetcms 22860  CMetSpccms 22937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-metu 19566  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-fil 21460  df-ust 21814  df-utop 21845  df-usp 21871  df-cfilu 21901  df-cusp 21912  df-xms 21935  df-ms 21936  df-cfil 22861  df-cmet 22863  df-cms 22940 This theorem is referenced by:  cnfldcusp  22961  recusp  22978
 Copyright terms: Public domain W3C validator