Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11g Structured version   Visualization version   GIF version

Theorem cdleme11g 34570
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme11.c 𝐶 = ((𝑃 𝑆) 𝑊)
cdleme11.d 𝐷 = ((𝑃 𝑇) 𝑊)
cdleme11.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme11g (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))

Proof of Theorem cdleme11g
StepHypRef Expression
1 cdleme11.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
21oveq2i 6560 . . 3 (𝑄 𝐹) = (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊))))
3 simp1l 1078 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
4 simp22l 1173 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
5 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
63, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
7 simp23 1089 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆𝐴)
8 eqid 2610 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
9 cdleme11.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
108, 9atbase 33594 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
117, 10syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆 ∈ (Base‘𝐾))
12 simp1 1054 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simp21 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
14 cdleme11.l . . . . . . 7 = (le‘𝐾)
15 cdleme11.j . . . . . . 7 = (join‘𝐾)
16 cdleme11.m . . . . . . 7 = (meet‘𝐾)
17 cdleme11.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
18 cdleme11.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
1914, 15, 16, 9, 17, 18, 8cdleme0aa 34515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
2012, 13, 4, 19syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑈 ∈ (Base‘𝐾))
218, 15latjcl 16874 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 𝑈) ∈ (Base‘𝐾))
226, 11, 20, 21syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 𝑈) ∈ (Base‘𝐾))
238, 9atbase 33594 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
244, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
258, 9atbase 33594 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2613, 25syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
278, 15latjcl 16874 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
286, 26, 11, 27syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑃 𝑆) ∈ (Base‘𝐾))
29 simp1r 1079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊𝐻)
308, 17lhpbase 34302 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊 ∈ (Base‘𝐾))
328, 16latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
336, 28, 31, 32syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
348, 15latjcl 16874 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
356, 24, 33, 34syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
368, 14, 15latlej1 16883 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
376, 24, 33, 36syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
388, 14, 15, 16, 9atmod1i1 34161 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 ((𝑃 𝑆) 𝑊))) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
393, 4, 22, 35, 37, 38syl131anc 1331 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
402, 39syl5eq 2656 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
41 simp22 1088 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4214, 15, 16, 9, 17, 18cdleme0cq 34520 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
4312, 13, 41, 42syl12anc 1316 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝑈) = (𝑃 𝑄))
4443oveq2d 6565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 (𝑄 𝑈)) = (𝑆 (𝑃 𝑄)))
458, 15latj12 16919 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
466, 24, 11, 20, 45syl13anc 1320 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
478, 15latj13 16921 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
486, 24, 26, 11, 47syl13anc 1320 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
4944, 46, 483eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑄 (𝑃 𝑆)))
5049oveq1d 6564 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))) = ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))))
518, 14, 16latmle1 16899 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
526, 28, 31, 51syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
538, 14, 15latjlej2 16889 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
546, 33, 28, 24, 53syl13anc 1320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
5552, 54mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)))
568, 15latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
576, 24, 28, 56syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
588, 14, 16latleeqm2 16903 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
596, 35, 57, 58syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
6055, 59mpbid 221 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊)))
61 cdleme11.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
6261oveq2i 6560 . . 3 (𝑄 𝐶) = (𝑄 ((𝑃 𝑆) 𝑊))
6360, 62syl6eqr 2662 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 𝐶))
6440, 50, 633eqtrd 2648 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292
This theorem is referenced by:  cdleme11h  34571  cdleme11j  34572  cdleme15a  34579
  Copyright terms: Public domain W3C validator