Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11g Structured version   Unicode version

Theorem cdleme11g 33909
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 33914. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme11.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
cdleme11.d  |-  D  =  ( ( P  .\/  T )  ./\  W )
cdleme11.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme11g  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )

Proof of Theorem cdleme11g
StepHypRef Expression
1 cdleme11.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
21oveq2i 6102 . . 3  |-  ( Q 
.\/  F )  =  ( Q  .\/  (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
3 simp1l 1012 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
4 simp22l 1107 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
5 hllat 33008 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
63, 5syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  K  e.  Lat )
7 simp23 1023 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  S  e.  A )
8 eqid 2443 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
9 cdleme11.a . . . . . . 7  |-  A  =  ( Atoms `  K )
108, 9atbase 32934 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
117, 10syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  S  e.  ( Base `  K )
)
12 simp1 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp21 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
14 cdleme11.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 cdleme11.j . . . . . . 7  |-  .\/  =  ( join `  K )
16 cdleme11.m . . . . . . 7  |-  ./\  =  ( meet `  K )
17 cdleme11.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
18 cdleme11.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
1914, 15, 16, 9, 17, 18, 8cdleme0aa 33854 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  ( Base `  K )
)
2012, 13, 4, 19syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  U  e.  ( Base `  K )
)
218, 15latjcl 15221 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
226, 11, 20, 21syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( S  .\/  U )  e.  (
Base `  K )
)
238, 9atbase 32934 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
244, 23syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  ( Base `  K )
)
258, 9atbase 32934 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2613, 25syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  P  e.  ( Base `  K )
)
278, 15latjcl 15221 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  ( P  .\/  S )  e.  ( Base `  K
) )
286, 26, 11, 27syl3anc 1218 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  S )  e.  (
Base `  K )
)
29 simp1r 1013 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  W  e.  H )
308, 17lhpbase 33642 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3129, 30syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  W  e.  ( Base `  K )
)
328, 16latmcl 15222 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  e.  ( Base `  K ) )
336, 28, 31, 32syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  S )  ./\  W )  e.  ( Base `  K ) )
348, 15latjcl 15221 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
356, 24, 33, 34syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  e.  ( Base `  K ) )
368, 14, 15latlej1 15230 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  Q  .<_  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) )
376, 24, 33, 36syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  Q  .<_  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )
388, 14, 15, 16, 9atmod1i1 33501 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( S  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)  /\  Q  .<_  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  ->  ( Q  .\/  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )  =  ( ( Q  .\/  ( S  .\/  U ) )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
393, 4, 22, 35, 37, 38syl131anc 1231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )  =  ( ( Q  .\/  ( S  .\/  U ) )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
402, 39syl5eq 2487 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( ( Q  .\/  ( S  .\/  U ) ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
41 simp22 1022 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4214, 15, 16, 9, 17, 18cdleme0cq 33859 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
4312, 13, 41, 42syl12anc 1216 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
4443oveq2d 6107 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( S  .\/  ( Q  .\/  U
) )  =  ( S  .\/  ( P 
.\/  Q ) ) )
458, 15latj12 15266 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( S  .\/  U ) )  =  ( S  .\/  ( Q  .\/  U ) ) )
466, 24, 11, 20, 45syl13anc 1220 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( S  .\/  U
) )  =  ( S  .\/  ( Q 
.\/  U ) ) )
478, 15latj13 15268 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( P  .\/  S ) )  =  ( S  .\/  ( P  .\/  Q ) ) )
486, 24, 26, 11, 47syl13anc 1220 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( P  .\/  S
) )  =  ( S  .\/  ( P 
.\/  Q ) ) )
4944, 46, 483eqtr4d 2485 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( S  .\/  U
) )  =  ( Q  .\/  ( P 
.\/  S ) ) )
5049oveq1d 6106 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( S  .\/  U ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
518, 14, 16latmle1 15246 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
526, 28, 31, 51syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
538, 14, 15latjlej2 15236 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( P 
.\/  S )  ./\  W )  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  .<_  ( Q  .\/  ( P  .\/  S ) ) ) )
546, 33, 28, 24, 53syl13anc 1220 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( (
( P  .\/  S
)  ./\  W )  .<_  ( P  .\/  S
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  .<_  ( Q  .\/  ( P  .\/  S ) ) ) )
5552, 54mpd 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  .<_  ( Q  .\/  ( P  .\/  S ) ) )
568, 15latjcl 15221 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
576, 24, 28, 56syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)
588, 14, 16latleeqm2 15250 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  .<_  ( Q 
.\/  ( P  .\/  S ) )  <->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) ) )
596, 35, 57, 58syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  .<_  ( Q 
.\/  ( P  .\/  S ) )  <->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) ) )
6055, 59mpbid 210 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) )
61 cdleme11.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
6261oveq2i 6102 . . 3  |-  ( Q 
.\/  C )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
)
6360, 62syl6eqr 2493 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  C
) )
6440, 50, 633eqtrd 2479 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   Basecbs 14174   lecple 14245   joincjn 15114   meetcmee 15115   Latclat 15215   Atomscatm 32908   HLchlt 32995   LHypclh 33628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-p1 15210  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-psubsp 33147  df-pmap 33148  df-padd 33440  df-lhyp 33632
This theorem is referenced by:  cdleme11h  33910  cdleme11j  33911  cdleme15a  33918
  Copyright terms: Public domain W3C validator