MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardiun Structured version   Visualization version   GIF version

Theorem cardiun 8691
Description: The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
cardiun (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem cardiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7034 . . . . . 6 (𝐴𝑉 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V)
2 vex 3176 . . . . . . . . 9 𝑦 ∈ V
3 eqeq1 2614 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (card‘𝐵) ↔ 𝑦 = (card‘𝐵)))
43rexbidv 3034 . . . . . . . . 9 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (card‘𝐵) ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵)))
52, 4elab 3319 . . . . . . . 8 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵))
6 cardidm 8668 . . . . . . . . . 10 (card‘(card‘𝐵)) = (card‘𝐵)
7 fveq2 6103 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → (card‘𝑦) = (card‘(card‘𝐵)))
8 id 22 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → 𝑦 = (card‘𝐵))
96, 7, 83eqtr4a 2670 . . . . . . . . 9 (𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
109rexlimivw 3011 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
115, 10sylbi 206 . . . . . . 7 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} → (card‘𝑦) = 𝑦)
1211rgen 2906 . . . . . 6 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦
13 carduni 8690 . . . . . 6 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V → (∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}))
141, 12, 13mpisyl 21 . . . . 5 (𝐴𝑉 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
15 fvex 6113 . . . . . . 7 (card‘𝐵) ∈ V
1615dfiun2 4490 . . . . . 6 𝑥𝐴 (card‘𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}
1716fveq2i 6106 . . . . 5 (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
1814, 17, 163eqtr4g 2669 . . . 4 (𝐴𝑉 → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
1918adantr 480 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
20 iuneq2 4473 . . . . 5 (∀𝑥𝐴 (card‘𝐵) = 𝐵 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2120adantl 481 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2221fveq2d 6107 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ 𝑥𝐴 𝐵))
2319, 22, 213eqtr3d 2652 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
2423ex 449 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173   cuni 4372   ciun 4455  cfv 5804  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-card 8648
This theorem is referenced by:  alephcard  8776
  Copyright terms: Public domain W3C validator