Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq2 Structured version   Visualization version   GIF version

Theorem iuneq2 4473
 Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 4472 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
2 ss2iun 4472 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐵)
31, 2anim12i 588 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
4 eqss 3583 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 2963 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 3046 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 263 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3583 . 2 ( 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 ↔ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
93, 7, 83imtr4i 280 1 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ∀wral 2896   ⊆ wss 3540  ∪ ciun 4455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-iun 4457 This theorem is referenced by:  iuneq2i  4475  iuneq2dv  4478  iunxdif3  4542  oa0r  7505  om0r  7506  om1r  7510  oe1m  7512  oaass  7528  oarec  7529  omass  7547  oeoalem  7563  oeoelem  7565  cardiun  8691  kmlem11  8865  iuncld  20659  comppfsc  21145  istotbnd3  32740  sstotbnd  32744  heibor  32790  iuneq12f  33142  cnvtrclfv  37035  iuneq2df  38237
 Copyright terms: Public domain W3C validator