MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brric Structured version   Visualization version   GIF version

Theorem brric 18567
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
brric (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)

Proof of Theorem brric
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ric 18541 . 2 𝑟 = ( RingIso “ (V ∖ 1𝑜))
2 ovex 6577 . . . . 5 (𝑟 RingHom 𝑠) ∈ V
3 rabexg 4739 . . . . 5 ((𝑟 RingHom 𝑠) ∈ V → { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V)
42, 3mp1i 13 . . . 4 ((𝑟 ∈ V ∧ 𝑠 ∈ V) → { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V)
54rgen2a 2960 . . 3 𝑟 ∈ V ∀𝑠 ∈ V { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V
6 df-rngiso 18539 . . . 4 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)})
76fnmpt2 7127 . . 3 (∀𝑟 ∈ V ∀𝑠 ∈ V { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V))
85, 7ax-mp 5 . 2 RingIso Fn (V × V)
91, 8brwitnlem 7474 1 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  c0 3874   class class class wbr 4583   × cxp 5036  ccnv 5037   Fn wfn 5799  (class class class)co 6549   RingHom crh 18535   RingIso crs 18536  𝑟 cric 18537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-rngiso 18539  df-ric 18541
This theorem is referenced by:  brric2  18568  mat1ric  20112  scmatric  20162  matcpmric  20383  pmmpric  20447
  Copyright terms: Public domain W3C validator