Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ric Structured version   Visualization version   GIF version

Definition df-ric 18541
 Description: Define the ring isomorphism relation, analogous to df-gic 17525: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
df-ric 𝑟 = ( RingIso “ (V ∖ 1𝑜))

Detailed syntax breakdown of Definition df-ric
StepHypRef Expression
1 cric 18537 . 2 class 𝑟
2 crs 18536 . . . 4 class RingIso
32ccnv 5037 . . 3 class RingIso
4 cvv 3173 . . . 4 class V
5 c1o 7440 . . . 4 class 1𝑜
64, 5cdif 3537 . . 3 class (V ∖ 1𝑜)
73, 6cima 5041 . 2 class ( RingIso “ (V ∖ 1𝑜))
81, 7wceq 1475 1 wff 𝑟 = ( RingIso “ (V ∖ 1𝑜))
 Colors of variables: wff setvar class This definition is referenced by:  brric  18567
 Copyright terms: Public domain W3C validator