Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2upln1upl Structured version   Visualization version   GIF version

Theorem bj-2upln1upl 32205
Description: A couple is never equal to a monuple. It is in order to have this "non-clashing" result that tagging was used. Without tagging, we would have 𝐴, ∅⦆ = ⦅𝐴. Note that in the context of Morse tuples, it is natural to define the 0-tuple as the empty set. Therefore, the present theorem together with bj-1upln0 32190 and bj-2upln0 32204 tell us that an m-tuple may equal an n-tuple only when m = n, at least for m, n <= 2, but this result would extend as soon as we define n-tuples for higher values of n. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-2upln1upl 𝐴, 𝐵⦆ ≠ ⦅𝐶

Proof of Theorem bj-2upln1upl
StepHypRef Expression
1 xpundi 5094 . . . . . . 7 ({∅} × (tag 𝐴 ∪ tag 𝐶)) = (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))
21difeq2i 3687 . . . . . 6 (({1𝑜} × tag 𝐵) ∖ ({∅} × (tag 𝐴 ∪ tag 𝐶))) = (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶)))
3 incom 3767 . . . . . . . . 9 (({∅} × (tag 𝐴 ∪ tag 𝐶)) ∩ ({1𝑜} × tag 𝐵)) = (({1𝑜} × tag 𝐵) ∩ ({∅} × (tag 𝐴 ∪ tag 𝐶)))
4 bj-disjsn01 32130 . . . . . . . . . 10 ({∅} ∩ {1𝑜}) = ∅
5 xpdisj1 5474 . . . . . . . . . 10 (({∅} ∩ {1𝑜}) = ∅ → (({∅} × (tag 𝐴 ∪ tag 𝐶)) ∩ ({1𝑜} × tag 𝐵)) = ∅)
64, 5ax-mp 5 . . . . . . . . 9 (({∅} × (tag 𝐴 ∪ tag 𝐶)) ∩ ({1𝑜} × tag 𝐵)) = ∅
73, 6eqtr3i 2634 . . . . . . . 8 (({1𝑜} × tag 𝐵) ∩ ({∅} × (tag 𝐴 ∪ tag 𝐶))) = ∅
8 disjdif2 3999 . . . . . . . 8 ((({1𝑜} × tag 𝐵) ∩ ({∅} × (tag 𝐴 ∪ tag 𝐶))) = ∅ → (({1𝑜} × tag 𝐵) ∖ ({∅} × (tag 𝐴 ∪ tag 𝐶))) = ({1𝑜} × tag 𝐵))
97, 8ax-mp 5 . . . . . . 7 (({1𝑜} × tag 𝐵) ∖ ({∅} × (tag 𝐴 ∪ tag 𝐶))) = ({1𝑜} × tag 𝐵)
10 bj-1ex 32131 . . . . . . . . . 10 1𝑜 ∈ V
1110snnz 4252 . . . . . . . . 9 {1𝑜} ≠ ∅
12 bj-tagn0 32160 . . . . . . . . 9 tag 𝐵 ≠ ∅
1311, 12pm3.2i 470 . . . . . . . 8 ({1𝑜} ≠ ∅ ∧ tag 𝐵 ≠ ∅)
14 xpnz 5472 . . . . . . . 8 (({1𝑜} ≠ ∅ ∧ tag 𝐵 ≠ ∅) ↔ ({1𝑜} × tag 𝐵) ≠ ∅)
1513, 14mpbi 219 . . . . . . 7 ({1𝑜} × tag 𝐵) ≠ ∅
169, 15eqnetri 2852 . . . . . 6 (({1𝑜} × tag 𝐵) ∖ ({∅} × (tag 𝐴 ∪ tag 𝐶))) ≠ ∅
172, 16eqnetrri 2853 . . . . 5 (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ≠ ∅
18 0pss 3965 . . . . 5 (∅ ⊊ (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ↔ (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ≠ ∅)
1917, 18mpbir 220 . . . 4 ∅ ⊊ (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶)))
20 ssun2 3739 . . . . . . . 8 ({∅} × tag 𝐶) ⊆ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))
21 sscon 3706 . . . . . . . 8 (({∅} × tag 𝐶) ⊆ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶)) → (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ⊆ (({1𝑜} × tag 𝐵) ∖ ({∅} × tag 𝐶)))
2220, 21ax-mp 5 . . . . . . 7 (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ⊆ (({1𝑜} × tag 𝐵) ∖ ({∅} × tag 𝐶))
23 ssun2 3739 . . . . . . . 8 ({1𝑜} × tag 𝐵) ⊆ (({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵))
24 ssdif 3707 . . . . . . . 8 (({1𝑜} × tag 𝐵) ⊆ (({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵)) → (({1𝑜} × tag 𝐵) ∖ ({∅} × tag 𝐶)) ⊆ ((({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵)) ∖ ({∅} × tag 𝐶)))
2523, 24ax-mp 5 . . . . . . 7 (({1𝑜} × tag 𝐵) ∖ ({∅} × tag 𝐶)) ⊆ ((({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵)) ∖ ({∅} × tag 𝐶))
2622, 25sstri 3577 . . . . . 6 (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ⊆ ((({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵)) ∖ ({∅} × tag 𝐶))
27 df-bj-2upl 32192 . . . . . . . 8 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵))
28 df-bj-1upl 32179 . . . . . . . . 9 𝐴⦆ = ({∅} × tag 𝐴)
2928uneq1i 3725 . . . . . . . 8 (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵)) = (({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵))
3027, 29eqtri 2632 . . . . . . 7 𝐴, 𝐵⦆ = (({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵))
3130difeq1i 3686 . . . . . 6 (⦅𝐴, 𝐵⦆ ∖ ({∅} × tag 𝐶)) = ((({∅} × tag 𝐴) ∪ ({1𝑜} × tag 𝐵)) ∖ ({∅} × tag 𝐶))
3226, 31sseqtr4i 3601 . . . . 5 (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ⊆ (⦅𝐴, 𝐵⦆ ∖ ({∅} × tag 𝐶))
33 df-bj-1upl 32179 . . . . . 6 𝐶⦆ = ({∅} × tag 𝐶)
3433difeq2i 3687 . . . . 5 (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆) = (⦅𝐴, 𝐵⦆ ∖ ({∅} × tag 𝐶))
3532, 34sseqtr4i 3601 . . . 4 (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ⊆ (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆)
36 psssstr 3675 . . . 4 ((∅ ⊊ (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ∧ (({1𝑜} × tag 𝐵) ∖ (({∅} × tag 𝐴) ∪ ({∅} × tag 𝐶))) ⊆ (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆)) → ∅ ⊊ (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆))
3719, 35, 36mp2an 704 . . 3 ∅ ⊊ (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆)
38 0pss 3965 . . 3 (∅ ⊊ (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆) ↔ (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆) ≠ ∅)
3937, 38mpbi 219 . 2 (⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆) ≠ ∅
40 difn0 3897 . 2 ((⦅𝐴, 𝐵⦆ ∖ ⦅𝐶⦆) ≠ ∅ → ⦅𝐴, 𝐵⦆ ≠ ⦅𝐶⦆)
4139, 40ax-mp 5 1 𝐴, 𝐵⦆ ≠ ⦅𝐶
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wne 2780  cdif 3537  cun 3538  cin 3539  wss 3540  wpss 3541  c0 3874  {csn 4125   × cxp 5036  1𝑜c1o 7440  tag bj-ctag 32155  bj-c1upl 32178  bj-c2uple 32191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-suc 5646  df-1o 7447  df-bj-tag 32156  df-bj-1upl 32179  df-bj-2upl 32192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator