MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnetrri Structured version   Visualization version   GIF version

Theorem eqnetrri 2853
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrr.1 𝐴 = 𝐵
eqnetrr.2 𝐴𝐶
Assertion
Ref Expression
eqnetrri 𝐵𝐶

Proof of Theorem eqnetrri
StepHypRef Expression
1 eqnetrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2619 . 2 𝐵 = 𝐴
3 eqnetrr.2 . 2 𝐴𝐶
42, 3eqnetri 2852 1 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wne 2780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-cleq 2603  df-ne 2782
This theorem is referenced by:  ballotlemii  29892  bj-2upln1upl  32205  wallispilem4  38961
  Copyright terms: Public domain W3C validator