Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnz Structured version   Visualization version   GIF version

Theorem xpnz 5472
 Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
xpnz ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)

Proof of Theorem xpnz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3890 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 n0 3890 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2anbi12i 729 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
4 eeanv 2170 . . . 4 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
53, 4bitr4i 266 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
6 opex 4859 . . . . . 6 𝑥, 𝑦⟩ ∈ V
7 eleq1 2676 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
8 opelxp 5070 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
97, 8syl6bb 275 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
106, 9spcev 3273 . . . . 5 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 n0 3890 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
1210, 11sylibr 223 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1847 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 206 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
15 xpeq1 5052 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
16 0xp 5122 . . . . 5 (∅ × 𝐵) = ∅
1715, 16syl6eq 2660 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1817necon3i 2814 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
19 xpeq2 5053 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
20 xp0 5471 . . . . 5 (𝐴 × ∅) = ∅
2119, 20syl6eq 2660 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
2221necon3i 2814 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
2318, 22jca 553 . 2 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
2414, 23impbii 198 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874  ⟨cop 4131   × cxp 5036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046 This theorem is referenced by:  xpeq0  5473  ssxpb  5487  xp11  5488  unixpid  5587  xpexr2  7000  frxp  7174  xpfir  8067  axcc2lem  9141  axdc4lem  9160  mamufacex  20014  txindis  21247  bj-xpnzex  32139  bj-1upln0  32190  bj-2upln1upl  32205  dibn0  35460
 Copyright terms: Public domain W3C validator