MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem11 Structured version   Visualization version   GIF version

Theorem ackbij1lem11 8935
Description: Lemma for ackbij1 8943. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem11
StepHypRef Expression
1 inss1 3795 . . . . . . 7 (𝒫 ω ∩ Fin) ⊆ 𝒫 ω
21sseli 3564 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4118 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
4 sstr 3576 . . . . 5 ((𝐵𝐴𝐴 ⊆ ω) → 𝐵 ⊆ ω)
53, 4sylan2 490 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
6 ssexg 4732 . . . . 5 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V)
7 elpwg 4116 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 ω ↔ 𝐵 ⊆ ω))
86, 7syl 17 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐵 ∈ 𝒫 ω ↔ 𝐵 ⊆ ω))
95, 8mpbird 246 . . 3 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω)
109ancoms 468 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ 𝒫 ω)
11 inss2 3796 . . . 4 (𝒫 ω ∩ Fin) ⊆ Fin
1211sseli 3564 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
13 ssfi 8065 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
1412, 13sylan 487 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
1510, 14elind 3760 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125   ciun 4455  cmpt 4643   × cxp 5036  cfv 5804  ωcom 6957  Fincfn 7841  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-om 6958  df-er 7629  df-en 7842  df-fin 7845
This theorem is referenced by:  ackbij1lem12  8936  ackbij1lem15  8939  ackbij1lem16  8940  ackbij1lem18  8942
  Copyright terms: Public domain W3C validator