Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Structured version   Visualization version   GIF version

Theorem abrexex 7033
 Description: Existence of a class abstraction of existentially restricted sets. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be thought of as 𝐵(𝑥). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 6389, funex 6387, fnex 6386, resfunexg 6384, and funimaexg 5889. See also abrexex2 7040. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1 𝐴 ∈ V
Assertion
Ref Expression
abrexex {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2610 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5292 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 abrexex.1 . . . 4 𝐴 ∈ V
43mptex 6390 . . 3 (𝑥𝐴𝐵) ∈ V
54rnex 6992 . 2 ran (𝑥𝐴𝐵) ∈ V
62, 5eqeltrri 2685 1 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  {cab 2596  ∃wrex 2897  Vcvv 3173   ↦ cmpt 4643  ran crn 5039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812 This theorem is referenced by:  ab2rexex  7050  kmlem10  8864  shftfval  13658  dvdsrval  18468  cmpsublem  21012  cmpsub  21013  ptrescn  21252  heibor1lem  32778  pointsetN  34045  eldiophb  36338
 Copyright terms: Public domain W3C validator