Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Visualization version   GIF version

Theorem eldiophb 36338
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐷,𝑘,𝑝   𝑘,𝑁,𝑝,𝑡,𝑢
Allowed substitution hints:   𝐷(𝑢,𝑡)

Proof of Theorem eldiophb
Dummy variables 𝑛 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 36337 . . . 4 Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
21dmmptss 5548 . . 3 dom Dioph ⊆ ℕ0
3 elfvdm 6130 . . 3 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ dom Dioph)
42, 3sseldi 3566 . 2 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
5 fveq2 6103 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
6 eqidd 2611 . . . . . . 7 (𝑛 = 𝑁 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝑘)))
7 oveq2 6557 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
87reseq2d 5317 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑢 ↾ (1...𝑛)) = (𝑢 ↾ (1...𝑁)))
98eqeq2d 2620 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑡 = (𝑢 ↾ (1...𝑛)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
109anbi1d 737 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1110rexbidv 3034 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1211abbidv 2728 . . . . . . 7 (𝑛 = 𝑁 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
135, 6, 12mpt2eq123dv 6615 . . . . . 6 (𝑛 = 𝑁 → (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1413rneqd 5274 . . . . 5 (𝑛 = 𝑁 → ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
15 ovex 6577 . . . . . . 7 (ℕ0𝑚 (1...𝑁)) ∈ V
1615pwex 4774 . . . . . 6 𝒫 (ℕ0𝑚 (1...𝑁)) ∈ V
17 eqid 2610 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1817rnmpt2 6668 . . . . . . 7 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}}
19 elmapi 7765 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0𝑚 (1...𝑘)) → 𝑢:(1...𝑘)⟶ℕ0)
20 fzss2 12252 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑘))
21 fssres 5983 . . . . . . . . . . . . . . . . 17 ((𝑢:(1...𝑘)⟶ℕ0 ∧ (1...𝑁) ⊆ (1...𝑘)) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2219, 20, 21syl2anr 494 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0𝑚 (1...𝑘))) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
23 nn0ex 11175 . . . . . . . . . . . . . . . . 17 0 ∈ V
24 ovex 6577 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
2523, 24elmap 7772 . . . . . . . . . . . . . . . 16 ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2622, 25sylibr 223 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0𝑚 (1...𝑘))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)))
27 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁))))
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁))))
2926, 28syl5ibrcom 236 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0𝑚 (1...𝑘))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0𝑚 (1...𝑁))))
3029rexlimdva 3013 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑁) → (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0𝑚 (1...𝑁))))
3130abssdv 3639 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0𝑚 (1...𝑁)))
3215elpw2 4755 . . . . . . . . . . . 12 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0𝑚 (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0𝑚 (1...𝑁)))
3331, 32sylibr 223 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0𝑚 (1...𝑁)))
34 eleq1 2676 . . . . . . . . . . 11 (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → (𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0𝑚 (1...𝑁))))
3533, 34syl5ibrcom 236 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁))))
3635rexlimdvw 3016 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁))))
3736rexlimiv 3009 . . . . . . . 8 (∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁)))
3837abssi 3640 . . . . . . 7 {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}} ⊆ 𝒫 (ℕ0𝑚 (1...𝑁))
3918, 38eqsstri 3598 . . . . . 6 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ⊆ 𝒫 (ℕ0𝑚 (1...𝑁))
4016, 39ssexi 4731 . . . . 5 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ∈ V
4114, 1, 40fvmpt 6191 . . . 4 (𝑁 ∈ ℕ0 → (Dioph‘𝑁) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
4241eleq2d 2673 . . 3 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ 𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})))
43 ovex 6577 . . . . . 6 (ℕ0𝑚 (1...𝑘)) ∈ V
4443abrexex 7033 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))} ∈ V
45 simpl 472 . . . . . . 7 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 = (𝑢 ↾ (1...𝑁)))
4645reximi 2994 . . . . . 6 (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁)))
4746ss2abi 3637 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))}
4844, 47ssexi 4731 . . . 4 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ V
4917, 48elrnmpt2 6671 . . 3 (𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
5042, 49syl6bb 275 . 2 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
514, 50biadan2 672 1 (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  wss 3540  𝒫 cpw 4108  dom cdm 5038  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  0cc0 9815  1c1 9816  0cn0 11169  cuz 11563  ...cfz 12197  mzPolycmzp 36303  Diophcdioph 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-dioph 36337
This theorem is referenced by:  eldioph  36339  eldioph2b  36344  eldiophelnn0  36345
  Copyright terms: Public domain W3C validator