Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrval Structured version   Visualization version   GIF version

Theorem dvdsrval 18468
 Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrval = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧,𝐵,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . 3 = (∥r𝑅)
2 fveq2 6103 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 dvdsr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
42, 3syl6eqr 2662 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54eleq2d 2673 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥𝐵))
64rexeqdv 3122 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦))
75, 6anbi12d 743 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦)))
8 fveq2 6103 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
9 dvdsr.3 . . . . . . . . . . 11 · = (.r𝑅)
108, 9syl6eqr 2662 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1110oveqd 6566 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(.r𝑟)𝑥) = (𝑧 · 𝑥))
1211eqeq1d 2612 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(.r𝑟)𝑥) = 𝑦 ↔ (𝑧 · 𝑥) = 𝑦))
1312rexbidv 3034 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
1413anbi2d 736 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
157, 14bitrd 267 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
1615opabbidv 4648 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
17 df-dvdsr 18464 . . . 4 r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)})
18 fvex 6113 . . . . . 6 (Base‘𝑅) ∈ V
193, 18eqeltri 2684 . . . . 5 𝐵 ∈ V
20 eqcom 2617 . . . . . . . . 9 ((𝑧 · 𝑥) = 𝑦𝑦 = (𝑧 · 𝑥))
2120rexbii 3023 . . . . . . . 8 (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥))
2221abbii 2726 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} = {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)}
2319abrexex 7033 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)} ∈ V
2422, 23eqeltri 2684 . . . . . 6 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V
2524a1i 11 . . . . 5 (𝑥𝐵 → {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V)
2619, 25opabex3 7038 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ∈ V
2716, 17, 26fvmpt 6191 . . 3 (𝑅 ∈ V → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
281, 27syl5eq 2656 . 2 (𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
29 fvprc 6097 . . . 4 𝑅 ∈ V → (∥r𝑅) = ∅)
301, 29syl5eq 2656 . . 3 𝑅 ∈ V → = ∅)
31 opabn0 4931 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ ↔ ∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
32 n0i 3879 . . . . . . . 8 (𝑥𝐵 → ¬ 𝐵 = ∅)
33 fvprc 6097 . . . . . . . . 9 𝑅 ∈ V → (Base‘𝑅) = ∅)
343, 33syl5eq 2656 . . . . . . . 8 𝑅 ∈ V → 𝐵 = ∅)
3532, 34nsyl2 141 . . . . . . 7 (𝑥𝐵𝑅 ∈ V)
3635adantr 480 . . . . . 6 ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3736exlimivv 1847 . . . . 5 (∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3831, 37sylbi 206 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ → 𝑅 ∈ V)
3938necon1bi 2810 . . 3 𝑅 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = ∅)
4030, 39eqtr4d 2647 . 2 𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
4128, 40pm2.61i 175 1 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∃wrex 2897  Vcvv 3173  ∅c0 3874  {copab 4642  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  ∥rcdsr 18461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-dvdsr 18464 This theorem is referenced by:  dvdsr  18469  dvdsrpropd  18519  dvdsrzring  19650
 Copyright terms: Public domain W3C validator