MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpsub Structured version   Visualization version   GIF version

Theorem cmpsub 21013
Description: Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
cmpsub.1 𝑋 = 𝐽
Assertion
Ref Expression
cmpsub ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝐽   𝑆,𝑐,𝑑   𝑋,𝑐,𝑑

Proof of Theorem cmpsub
Dummy variables 𝑥 𝑦 𝑓 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
21iscmp 21001 . . 3 ((𝐽t 𝑆) ∈ Comp ↔ ((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
3 id 22 . . . . . 6 (𝑆𝑋𝑆𝑋)
4 cmpsub.1 . . . . . . 7 𝑋 = 𝐽
54topopn 20536 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 4732 . . . . . 6 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
73, 5, 6syl2anr 494 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
8 resttop 20774 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
97, 8syldan 486 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
10 ibar 524 . . . . 5 ((𝐽t 𝑆) ∈ Top → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡))))
1110bicomd 212 . . . 4 ((𝐽t 𝑆) ∈ Top → (((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
129, 11syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
132, 12syl5bb 271 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
14 vex 3176 . . . . . . . . . . 11 𝑡 ∈ V
15 eqeq1 2614 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑥 = (𝑦𝑆) ↔ 𝑡 = (𝑦𝑆)))
1615rexbidv 3034 . . . . . . . . . . 11 (𝑥 = 𝑡 → (∃𝑦𝑐 𝑥 = (𝑦𝑆) ↔ ∃𝑦𝑐 𝑡 = (𝑦𝑆)))
1714, 16elab 3319 . . . . . . . . . 10 (𝑡 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∃𝑦𝑐 𝑡 = (𝑦𝑆))
18 selpw 4115 . . . . . . . . . . . . . 14 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
19 ssel2 3563 . . . . . . . . . . . . . . . 16 ((𝑐𝐽𝑦𝑐) → 𝑦𝐽)
20 ineq1 3769 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑦 → (𝑑𝑆) = (𝑦𝑆))
2120eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑦 → (𝑡 = (𝑑𝑆) ↔ 𝑡 = (𝑦𝑆)))
2221rspcev 3282 . . . . . . . . . . . . . . . . 17 ((𝑦𝐽𝑡 = (𝑦𝑆)) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))
2322ex 449 . . . . . . . . . . . . . . . 16 (𝑦𝐽 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
2419, 23syl 17 . . . . . . . . . . . . . . 15 ((𝑐𝐽𝑦𝑐) → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
2524ex 449 . . . . . . . . . . . . . 14 (𝑐𝐽 → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2618, 25sylbi 206 . . . . . . . . . . . . 13 (𝑐 ∈ 𝒫 𝐽 → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2726adantl 481 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2827rexlimdv 3012 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∃𝑦𝑐 𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
29 simpll 786 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → 𝐽 ∈ Top)
304sseq2i 3593 . . . . . . . . . . . . . 14 (𝑆𝑋𝑆 𝐽)
31 uniexg 6853 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → 𝐽 ∈ V)
32 ssexg 4732 . . . . . . . . . . . . . . . 16 ((𝑆 𝐽 𝐽 ∈ V) → 𝑆 ∈ V)
3331, 32sylan2 490 . . . . . . . . . . . . . . 15 ((𝑆 𝐽𝐽 ∈ Top) → 𝑆 ∈ V)
3433ancoms 468 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ∈ V)
3530, 34sylan2b 491 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
3635adantr 480 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → 𝑆 ∈ V)
37 elrest 15911 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝑡 ∈ (𝐽t 𝑆) ↔ ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
3829, 36, 37syl2anc 691 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑡 ∈ (𝐽t 𝑆) ↔ ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
3928, 38sylibrd 248 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∃𝑦𝑐 𝑡 = (𝑦𝑆) → 𝑡 ∈ (𝐽t 𝑆)))
4017, 39syl5bi 231 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑡 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝑡 ∈ (𝐽t 𝑆)))
4140ssrdv 3574 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ⊆ (𝐽t 𝑆))
42 vex 3176 . . . . . . . . . 10 𝑐 ∈ V
4342abrexex 7033 . . . . . . . . 9 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ V
4443elpw 4114 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆) ↔ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ⊆ (𝐽t 𝑆))
4541, 44sylibr 223 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆))
46 unieq 4380 . . . . . . . . . 10 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
4746eqeq2d 2620 . . . . . . . . 9 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ( (𝐽t 𝑆) = 𝑠 (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}))
48 pweq 4111 . . . . . . . . . . 11 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝒫 𝑠 = 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
4948ineq1d 3775 . . . . . . . . . 10 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (𝒫 𝑠 ∩ Fin) = (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin))
5049rexeqdv 3122 . . . . . . . . 9 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡 ↔ ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5147, 50imbi12d 333 . . . . . . . 8 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
5251rspcva 3280 . . . . . . 7 (({𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆) ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5345, 52sylan 487 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5453ex 449 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
554restuni 20776 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
5655ad2antrr 758 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑆 = (𝐽t 𝑆))
57 vex 3176 . . . . . . . . . . . . . 14 𝑦 ∈ V
5857inex1 4727 . . . . . . . . . . . . 13 (𝑦𝑆) ∈ V
5958dfiun2 4490 . . . . . . . . . . . 12 𝑦𝑐 (𝑦𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}
60 incom 3767 . . . . . . . . . . . . . 14 (𝑦𝑆) = (𝑆𝑦)
6160a1i 11 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ 𝑦𝑐) → (𝑦𝑆) = (𝑆𝑦))
6261iuneq2dv 4478 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 (𝑦𝑆) = 𝑦𝑐 (𝑆𝑦))
6359, 62syl5eqr 2658 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} = 𝑦𝑐 (𝑆𝑦))
64 iunin2 4520 . . . . . . . . . . . 12 𝑦𝑐 (𝑆𝑦) = (𝑆 𝑦𝑐 𝑦)
65 uniiun 4509 . . . . . . . . . . . . . . . 16 𝑐 = 𝑦𝑐 𝑦
6665eqcomi 2619 . . . . . . . . . . . . . . 15 𝑦𝑐 𝑦 = 𝑐
6766a1i 11 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 𝑦 = 𝑐)
6867ineq2d 3776 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑦𝑐 𝑦) = (𝑆 𝑐))
69 incom 3767 . . . . . . . . . . . . . . 15 (𝑆 𝑐) = ( 𝑐𝑆)
70 sseqin2 3779 . . . . . . . . . . . . . . . 16 (𝑆 𝑐 ↔ ( 𝑐𝑆) = 𝑆)
7170biimpi 205 . . . . . . . . . . . . . . 15 (𝑆 𝑐 → ( 𝑐𝑆) = 𝑆)
7269, 71syl5eq 2656 . . . . . . . . . . . . . 14 (𝑆 𝑐 → (𝑆 𝑐) = 𝑆)
7372adantl 481 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑐) = 𝑆)
7468, 73eqtrd 2644 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑦𝑐 𝑦) = 𝑆)
7564, 74syl5eq 2656 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 (𝑆𝑦) = 𝑆)
7663, 75eqtr2d 2645 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑆 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
7756, 76eqeq12d 2625 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 = 𝑆 (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}))
7856eqeq1d 2612 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 = 𝑡 (𝐽t 𝑆) = 𝑡))
7978rexbidv 3034 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 ↔ ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
8077, 79imbi12d 333 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → ((𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡) ↔ ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
81 eqid 2610 . . . . . . . . . 10 𝑆 = 𝑆
8281a1bi 351 . . . . . . . . 9 (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 ↔ (𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡))
83 elin 3758 . . . . . . . . . . . 12 (𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) ↔ (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∧ 𝑡 ∈ Fin))
84 selpw 4115 . . . . . . . . . . . . . 14 (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ 𝑡 ⊆ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
85 dfss3 3558 . . . . . . . . . . . . . 14 (𝑡 ⊆ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡 𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
86 vex 3176 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
87 eqeq1 2614 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (𝑥 = (𝑦𝑆) ↔ 𝑠 = (𝑦𝑆)))
8887rexbidv 3034 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑠 → (∃𝑦𝑐 𝑥 = (𝑦𝑆) ↔ ∃𝑦𝑐 𝑠 = (𝑦𝑆)))
8986, 88elab 3319 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∃𝑦𝑐 𝑠 = (𝑦𝑆))
9089ralbii 2963 . . . . . . . . . . . . . 14 (∀𝑠𝑡 𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆))
9184, 85, 903bitri 285 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆))
9291anbi1i 727 . . . . . . . . . . . 12 ((𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∧ 𝑡 ∈ Fin) ↔ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin))
9383, 92bitri 263 . . . . . . . . . . 11 (𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) ↔ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin))
94 ineq1 3769 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑠) → (𝑦𝑆) = ((𝑓𝑠) ∩ 𝑆))
9594eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑦 = (𝑓𝑠) → (𝑠 = (𝑦𝑆) ↔ 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9695ac6sfi 8089 . . . . . . . . . . . . . 14 ((𝑡 ∈ Fin ∧ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆)) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9796ancoms 468 . . . . . . . . . . . . 13 ((∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9897adantl 481 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
99 frn 5966 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑡𝑐 → ran 𝑓𝑐)
10099ad2antrl 760 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓𝑐)
101 vex 3176 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ V
102101rnex 6992 . . . . . . . . . . . . . . . . . . . . 21 ran 𝑓 ∈ V
103102elpw 4114 . . . . . . . . . . . . . . . . . . . 20 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
104100, 103sylibr 223 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ 𝒫 𝑐)
105 simprr 792 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → 𝑡 ∈ Fin)
106105ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑡 ∈ Fin)
107 ffn 5958 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑡𝑐𝑓 Fn 𝑡)
108 dffn4 6034 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑡𝑓:𝑡onto→ran 𝑓)
109107, 108sylib 207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝑡𝑐𝑓:𝑡onto→ran 𝑓)
110 fodomfi 8124 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ Fin ∧ 𝑓:𝑡onto→ran 𝑓) → ran 𝑓𝑡)
111109, 110sylan2 490 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ Fin ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
112111adantll 746 . . . . . . . . . . . . . . . . . . . . . 22 (((∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin) ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
113112adantll 746 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
114113ad2ant2r 779 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓𝑡)
115 domfi 8066 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ Fin ∧ ran 𝑓𝑡) → ran 𝑓 ∈ Fin)
116106, 114, 115syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ Fin)
117104, 116elind 3760 . . . . . . . . . . . . . . . . . 18 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
118 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑢𝑠 = 𝑢)
119 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑢 → (𝑓𝑠) = (𝑓𝑢))
120119ineq1d 3775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑢 → ((𝑓𝑠) ∩ 𝑆) = ((𝑓𝑢) ∩ 𝑆))
121118, 120eqeq12d 2625 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑢 → (𝑠 = ((𝑓𝑠) ∩ 𝑆) ↔ 𝑢 = ((𝑓𝑢) ∩ 𝑆)))
122121rspccv 3279 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆) → (𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)))
123 pm2.27 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → 𝑢 = ((𝑓𝑢) ∩ 𝑆)))
124 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑢) ∩ 𝑆) ⊆ (𝑓𝑢)
125 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑢 ⊆ (𝑓𝑢) ↔ ((𝑓𝑢) ∩ 𝑆) ⊆ (𝑓𝑢)))
126124, 125mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → 𝑢 ⊆ (𝑓𝑢))
127 ssel 3562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑢 ⊆ (𝑓𝑢) → (𝑤𝑢𝑤 ∈ (𝑓𝑢)))
128127a1dd 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 ⊆ (𝑓𝑢) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢))))
129126, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢))))
130129a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑢𝑡 → (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢)))))
1311303imp 1249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢)))
132 fnfvelrn 6264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝑡𝑢𝑡) → (𝑓𝑢) ∈ ran 𝑓)
133132expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢𝑡 → (𝑓 Fn 𝑡 → (𝑓𝑢) ∈ ran 𝑓))
1341333ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓 Fn 𝑡 → (𝑓𝑢) ∈ ran 𝑓))
135107, 134syl5 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐 → (𝑓𝑢) ∈ ran 𝑓))
136131, 135jcad 554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
1371363exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢𝑡 → (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
138123, 137syld 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑤𝑢 → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
139138com3r 85 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑢 → (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
140139imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤𝑢𝑢𝑡) → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓))))
141140com3l 87 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓))))
142141impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:𝑡𝑐 ∧ (𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆))) → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
143122, 142sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
144 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓𝑢) ∈ V
145 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑓𝑢) → (𝑤𝑣𝑤 ∈ (𝑓𝑢)))
146 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑓𝑢) → (𝑣 ∈ ran 𝑓 ↔ (𝑓𝑢) ∈ ran 𝑓))
147145, 146anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = (𝑓𝑢) → ((𝑤𝑣𝑣 ∈ ran 𝑓) ↔ (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
148144, 147spcev 3273 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓))
149143, 148syl6 34 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ((𝑤𝑢𝑢𝑡) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓)))
150149exlimdv 1848 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (∃𝑢(𝑤𝑢𝑢𝑡) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓)))
151 eluni 4375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑡 ↔ ∃𝑢(𝑤𝑢𝑢𝑡))
152 eluni 4375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ran 𝑓 ↔ ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓))
153150, 151, 1523imtr4g 284 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑤 𝑡𝑤 ran 𝑓))
154153ssrdv 3574 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → 𝑡 ran 𝑓)
155154adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑡 ran 𝑓)
156 sseq1 3589 . . . . . . . . . . . . . . . . . . . 20 (𝑆 = 𝑡 → (𝑆 ran 𝑓 𝑡 ran 𝑓))
157156ad2antlr 759 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → (𝑆 ran 𝑓 𝑡 ran 𝑓))
158155, 157mpbird 246 . . . . . . . . . . . . . . . . . 18 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑆 ran 𝑓)
159117, 158jca 553 . . . . . . . . . . . . . . . . 17 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))
160159ex 449 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) → ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓)))
161160eximdv 1833 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓)))
162161ex 449 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (𝑆 = 𝑡 → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))))
163162com23 84 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑆 = 𝑡 → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))))
164 unieq 4380 . . . . . . . . . . . . . . . 16 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
165164sseq2d 3596 . . . . . . . . . . . . . . 15 (𝑑 = ran 𝑓 → (𝑆 𝑑𝑆 ran 𝑓))
166165rspcev 3282 . . . . . . . . . . . . . 14 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)
167166exlimiv 1845 . . . . . . . . . . . . 13 (∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)
168163, 167syl8 74 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
16998, 168mpd 15 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17093, 169sylan2b 491 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ 𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
171170rexlimdva 3013 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17282, 171syl5bir 232 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → ((𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17380, 172sylbird 249 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
174173ex 449 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑆 𝑐 → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
175174com23 84 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → (𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
17654, 175syld 46 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → (𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
177176ralrimdva 2952 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
1784cmpsublem 21012 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
179177, 178impbid 201 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
18013, 179bitrd 267 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   ciun 4455   class class class wbr 4583  ran crn 5039   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  cdom 7839  Fincfn 7841  t crest 15904  Topctop 20517  Compccmp 20999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000
This theorem is referenced by:  cmpcld  21015  uncmp  21016  hauscmplem  21019  1stckgenlem  21166  icccmp  22436  bndth  22565  ovolicc2  23097  stoweidlem50  38943  stoweidlem57  38950
  Copyright terms: Public domain W3C validator