Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem1 Structured version   Visualization version   GIF version

Theorem 3atlem1 33787
Description: Lemma for 3at 33794. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3atlem1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))

Proof of Theorem 3atlem1
StepHypRef Expression
1 simp11 1084 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ HL)
2 simp131 1189 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑆𝐴)
3 simp132 1190 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇𝐴)
4 simp133 1191 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈𝐴)
5 3at.j . . . . . 6 = (join‘𝐾)
6 3at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6hlatjass 33674 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
81, 2, 3, 4, 7syl13anc 1320 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
9 simp121 1186 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝐴)
10 simp122 1187 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄𝐴)
11 simp123 1188 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅𝐴)
125, 6hlatjass 33674 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
131, 9, 10, 11, 12syl13anc 1320 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
14 simp3 1056 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))
1513, 14eqbrtrrd 4607 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈))
16 hllat 33668 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
171, 16syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝐾 ∈ Lat)
18 eqid 2610 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1918, 6atbase 33594 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
209, 19syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 ∈ (Base‘𝐾))
2118, 5, 6hlatjcl 33671 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
221, 10, 11, 21syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2318, 5, 6hlatjcl 33671 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
241, 2, 3, 23syl3anc 1318 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑆 𝑇) ∈ (Base‘𝐾))
2518, 6atbase 33594 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
264, 25syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑈 ∈ (Base‘𝐾))
2718, 5latjcl 16874 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
2817, 24, 26, 27syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
29 3at.l . . . . . . . . . 10 = (le‘𝐾)
3018, 29, 5latjle12 16885 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → ((𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)) ↔ (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈)))
3117, 20, 22, 28, 30syl13anc 1320 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)) ↔ (𝑃 (𝑄 𝑅)) ((𝑆 𝑇) 𝑈)))
3215, 31mpbird 246 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 ((𝑆 𝑇) 𝑈) ∧ (𝑄 𝑅) ((𝑆 𝑇) 𝑈)))
3332simpld 474 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 ((𝑆 𝑇) 𝑈))
3433, 8breqtrd 4609 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃 (𝑆 (𝑇 𝑈)))
3518, 5, 6hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
361, 3, 4, 35syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 𝑈) ∈ (Base‘𝐾))
37 simp22 1088 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑃 (𝑇 𝑈))
3818, 29, 5, 6hlexchb2 33689 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴 ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑇 𝑈)) → (𝑃 (𝑆 (𝑇 𝑈)) ↔ (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈))))
391, 9, 2, 36, 37, 38syl131anc 1331 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑆 (𝑇 𝑈)) ↔ (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈))))
4034, 39mpbid 221 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈)) = (𝑆 (𝑇 𝑈)))
415, 6hlatj12 33675 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑇 𝑈)) = (𝑇 (𝑃 𝑈)))
421, 9, 3, 4, 41syl13anc 1320 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑇 𝑈)) = (𝑇 (𝑃 𝑈)))
438, 40, 423eqtr2d 2650 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑇 (𝑃 𝑈)))
445, 6hlatj12 33675 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
451, 9, 10, 11, 44syl13anc 1320 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
4615, 45, 433brtr3d 4614 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈)))
4718, 6atbase 33594 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4810, 47syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 ∈ (Base‘𝐾))
4918, 5, 6hlatjcl 33671 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
501, 9, 11, 49syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑅) ∈ (Base‘𝐾))
5118, 6atbase 33594 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
523, 51syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑇 ∈ (Base‘𝐾))
5318, 5, 6hlatjcl 33671 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
541, 9, 4, 53syl3anc 1318 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑈) ∈ (Base‘𝐾))
5518, 5latjcl 16874 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))
5617, 52, 54, 55syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))
5718, 29, 5latjle12 16885 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 (𝑃 𝑈)) ∈ (Base‘𝐾))) → ((𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))) ↔ (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈))))
5817, 48, 50, 56, 57syl13anc 1320 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))) ↔ (𝑄 (𝑃 𝑅)) (𝑇 (𝑃 𝑈))))
5946, 58mpbird 246 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ∧ (𝑃 𝑅) (𝑇 (𝑃 𝑈))))
6059simpld 474 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑄 (𝑇 (𝑃 𝑈)))
61 simp23 1089 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑄 (𝑃 𝑈))
6218, 29, 5, 6hlexchb2 33689 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑇𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 (𝑃 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈))))
631, 10, 3, 54, 61, 62syl131anc 1331 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑇 (𝑃 𝑈)) ↔ (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈))))
6460, 63mpbid 221 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑇 (𝑃 𝑈)))
6518, 5latj13 16921 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑈)) = (𝑈 (𝑃 𝑄)))
6617, 48, 20, 26, 65syl13anc 1320 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑄 (𝑃 𝑈)) = (𝑈 (𝑃 𝑄)))
6743, 64, 663eqtr2d 2650 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑆 𝑇) 𝑈) = (𝑈 (𝑃 𝑄)))
6818, 5, 6hlatjcl 33671 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
691, 9, 10, 68syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑃 𝑄) ∈ (Base‘𝐾))
7018, 6atbase 33594 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
7111, 70syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ∈ (Base‘𝐾))
7218, 29, 5latjle12 16885 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
7317, 69, 71, 28, 72syl13anc 1320 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
7414, 73mpbird 246 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) ((𝑆 𝑇) 𝑈) ∧ 𝑅 ((𝑆 𝑇) 𝑈)))
7574simprd 478 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 ((𝑆 𝑇) 𝑈))
7675, 67breqtrd 4609 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑅 (𝑈 (𝑃 𝑄)))
77 simp21 1087 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑅 (𝑃 𝑄))
7818, 29, 5, 6hlexchb2 33689 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 (𝑈 (𝑃 𝑄)) ↔ (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄))))
791, 11, 4, 69, 77, 78syl131anc 1331 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑈 (𝑃 𝑄)) ↔ (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄))))
8076, 79mpbid 221 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑃 𝑄)) = (𝑈 (𝑃 𝑄)))
8118, 5latjcom 16882 . . 3 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑅))
8217, 71, 69, 81syl3anc 1318 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝑅 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑅))
8367, 80, 823eqtr2rd 2651 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑃 (𝑇 𝑈) ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656
This theorem is referenced by:  3atlem3  33789
  Copyright terms: Public domain W3C validator