Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zorn2lem3 | Structured version Visualization version GIF version |
Description: Lemma for zorn2 9211. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
Ref | Expression |
---|---|
zorn2lem3 | ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
4 | 1, 2, 3 | zorn2lem2 9202 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
6 | ssrab2 3650 | . . . . 5 ⊢ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⊆ 𝐴 | |
7 | 3, 6 | eqsstri 3598 | . . . 4 ⊢ 𝐷 ⊆ 𝐴 |
8 | 1, 2, 3 | zorn2lem1 9201 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
9 | 7, 8 | sseldi 3566 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐴) |
10 | breq1 4586 | . . . . . 6 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → ((𝐹‘𝑥)𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
11 | 10 | biimprcd 239 | . . . . 5 ⊢ ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐹‘𝑥)𝑅(𝐹‘𝑥))) |
12 | poirr 4970 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ¬ (𝐹‘𝑥)𝑅(𝐹‘𝑥)) | |
13 | 11, 12 | nsyli 154 | . . . 4 ⊢ ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
14 | 13 | com12 32 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
15 | 9, 14 | sylan2 490 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
16 | 5, 15 | syld 46 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 {crab 2900 Vcvv 3173 ∅c0 3874 class class class wbr 4583 ↦ cmpt 4643 Po wpo 4957 We wwe 4996 ran crn 5039 “ cima 5041 Oncon0 5640 ‘cfv 5804 ℩crio 6510 recscrecs 7354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-wrecs 7294 df-recs 7355 |
This theorem is referenced by: zorn2lem4 9204 |
Copyright terms: Public domain | W3C validator |