MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem1 Structured version   Visualization version   GIF version

Theorem zorn2lem1 9201
Description: Lemma for zorn2 9211. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem1
StepHypRef Expression
1 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr2 7381 . . . 4 (𝑥 ∈ On → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
32adantr 480 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
41tfr1 7380 . . . . . 6 𝐹 Fn On
5 fnfun 5902 . . . . . 6 (𝐹 Fn On → Fun 𝐹)
64, 5ax-mp 5 . . . . 5 Fun 𝐹
7 vex 3176 . . . . 5 𝑥 ∈ V
8 resfunexg 6384 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
96, 7, 8mp2an 704 . . . 4 (𝐹𝑥) ∈ V
10 rneq 5272 . . . . . . . . . . . 12 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
11 df-ima 5051 . . . . . . . . . . . 12 (𝐹𝑥) = ran (𝐹𝑥)
1210, 11syl6eqr 2662 . . . . . . . . . . 11 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
1312eleq2d 2673 . . . . . . . . . 10 (𝑓 = (𝐹𝑥) → (𝑔 ∈ ran 𝑓𝑔 ∈ (𝐹𝑥)))
1413imbi1d 330 . . . . . . . . 9 (𝑓 = (𝐹𝑥) → ((𝑔 ∈ ran 𝑓𝑔𝑅𝑧) ↔ (𝑔 ∈ (𝐹𝑥) → 𝑔𝑅𝑧)))
1514ralbidv2 2967 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧))
1615rabbidv 3164 . . . . . . 7 (𝑓 = (𝐹𝑥) → {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧})
17 zorn2lem.4 . . . . . . 7 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
18 zorn2lem.5 . . . . . . 7 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
1916, 17, 183eqtr4g 2669 . . . . . 6 (𝑓 = (𝐹𝑥) → 𝐶 = 𝐷)
2019eleq2d 2673 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (𝑢𝐶𝑢𝐷))
2120imbi1d 330 . . . . . . 7 (𝑓 = (𝐹𝑥) → ((𝑢𝐶 → ¬ 𝑢𝑤𝑣) ↔ (𝑢𝐷 → ¬ 𝑢𝑤𝑣)))
2221ralbidv2 2967 . . . . . 6 (𝑓 = (𝐹𝑥) → (∀𝑢𝐶 ¬ 𝑢𝑤𝑣 ↔ ∀𝑢𝐷 ¬ 𝑢𝑤𝑣))
2319, 22riotaeqbidv 6514 . . . . 5 (𝑓 = (𝐹𝑥) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
24 eqid 2610 . . . . 5 (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)) = (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))
25 riotaex 6515 . . . . 5 (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ V
2623, 24, 25fvmpt 6191 . . . 4 ((𝐹𝑥) ∈ V → ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
279, 26ax-mp 5 . . 3 ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
283, 27syl6eq 2660 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
29 simprl 790 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 We 𝐴)
30 weso 5029 . . . . . . 7 (𝑤 We 𝐴𝑤 Or 𝐴)
3130ad2antrl 760 . . . . . 6 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
32 vex 3176 . . . . . 6 𝑤 ∈ V
33 soex 7002 . . . . . 6 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
3431, 32, 33sylancl 693 . . . . 5 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐴 ∈ V)
3518, 34rabexd 4741 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ∈ V)
36 ssrab2 3650 . . . . . 6 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ⊆ 𝐴
3718, 36eqsstri 3598 . . . . 5 𝐷𝐴
3837a1i 11 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷𝐴)
39 simprr 792 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ≠ ∅)
40 wereu 5034 . . . 4 ((𝑤 We 𝐴 ∧ (𝐷 ∈ V ∧ 𝐷𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
4129, 35, 38, 39, 40syl13anc 1320 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
42 riotacl 6525 . . 3 (∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣 → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4341, 42syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4428, 43eqeltrd 2688 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  ∃!wreu 2898  {crab 2900  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643   Or wor 4958   We wwe 4996  ran crn 5039  cres 5040  cima 5041  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  cfv 5804  crio 6510  recscrecs 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  zorn2lem2  9202  zorn2lem3  9203  zorn2lem4  9204  zorn2lem5  9205
  Copyright terms: Public domain W3C validator