MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstopn Structured version   Visualization version   GIF version

Theorem xmstopn 22066
Description: The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
xmstopn (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))

Proof of Theorem xmstopn
StepHypRef Expression
1 isms.j . . 3 𝐽 = (TopOpen‘𝐾)
2 isms.x . . 3 𝑋 = (Base‘𝐾)
3 isms.d . . 3 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
41, 2, 3isxms 22062 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
54simprbi 479 1 (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977   × cxp 5036  cres 5040  cfv 5804  Basecbs 15695  distcds 15777  TopOpenctopn 15905  MetOpencmopn 19557  TopSpctps 20519  ∞MetSpcxme 21932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-res 5050  df-iota 5768  df-fv 5812  df-xms 21935
This theorem is referenced by:  imasf1oxms  22104  ressxms  22140  prdsxmslem2  22144  tmsxpsmopn  22152  xmsusp  22184  cmetcusp1  22957  minveclem4a  23009  minveclem4  23011  qqhcn  29363  rrhcn  29369  rrexthaus  29379  dya2icoseg2  29667  sitmcl  29740
  Copyright terms: Public domain W3C validator