Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmstopn | Structured version Visualization version GIF version |
Description: The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
4 | 1, 2, 3 | isxms 22062 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
5 | 4 | simprbi 479 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 × cxp 5036 ↾ cres 5040 ‘cfv 5804 Basecbs 15695 distcds 15777 TopOpenctopn 15905 MetOpencmopn 19557 TopSpctps 20519 ∞MetSpcxme 21932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-res 5050 df-iota 5768 df-fv 5812 df-xms 21935 |
This theorem is referenced by: imasf1oxms 22104 ressxms 22140 prdsxmslem2 22144 tmsxpsmopn 22152 xmsusp 22184 cmetcusp1 22957 minveclem4a 23009 minveclem4 23011 qqhcn 29363 rrhcn 29369 rrexthaus 29379 dya2icoseg2 29667 sitmcl 29740 |
Copyright terms: Public domain | W3C validator |