Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunxp Structured version   Visualization version   GIF version

Theorem wunxp 9425
 Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunxp (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem wunxp
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . 5 (𝜑𝐴𝑈)
3 wunop.3 . . . . 5 (𝜑𝐵𝑈)
41, 2, 3wunun 9411 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑈)
51, 4wunpw 9408 . . 3 (𝜑 → 𝒫 (𝐴𝐵) ∈ 𝑈)
61, 5wunpw 9408 . 2 (𝜑 → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
7 xpsspw 5156 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
87a1i 11 . 2 (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵))
91, 6, 8wunss 9413 1 (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977   ∪ cun 3538   ⊆ wss 3540  𝒫 cpw 4108   × cxp 5036  WUnicwun 9401 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-opab 4644  df-tr 4681  df-xp 5044  df-rel 5045  df-wun 9403 This theorem is referenced by:  wunpm  9426  wuncnv  9431  wunco  9434  wuntpos  9435  tskxp  9488  wuncn  9870  wunfunc  16382  wunnat  16439  catcoppccl  16581  catcfuccl  16582  catcxpccl  16670
 Copyright terms: Public domain W3C validator