Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version |
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wunpw 9408 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
4 | 1, 3 | wunelss 9409 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | elpw2g 4754 | . . . 4 ⊢ (𝐴 ∈ 𝑈 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
8 | 5, 7 | mpbird 246 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
9 | 4, 8 | sseldd 3569 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∈ wcel 1977 ⊆ wss 3540 𝒫 cpw 4108 WUnicwun 9401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-v 3175 df-in 3547 df-ss 3554 df-pw 4110 df-uni 4373 df-tr 4681 df-wun 9403 |
This theorem is referenced by: wunin 9414 wundif 9415 wunint 9416 wun0 9419 wunom 9421 wunxp 9425 wunpm 9426 wunmap 9427 wundm 9429 wunrn 9430 wuncnv 9431 wunres 9432 wunfv 9433 wunco 9434 wuntpos 9435 wuncn 9870 wunndx 15711 wunstr 15714 wunfunc 16382 |
Copyright terms: Public domain | W3C validator |