MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Structured version   Visualization version   GIF version

Theorem catcoppccl 16581
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcoppccl.c 𝐶 = (CatCat‘𝑈)
catcoppccl.b 𝐵 = (Base‘𝐶)
catcoppccl.o 𝑂 = (oppCat‘𝑋)
catcoppccl.1 (𝜑𝑈 ∈ WUni)
catcoppccl.2 (𝜑 → ω ∈ 𝑈)
catcoppccl.3 (𝜑𝑋𝐵)
Assertion
Ref Expression
catcoppccl (𝜑𝑂𝐵)

Proof of Theorem catcoppccl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5 (𝜑𝑋𝐵)
2 eqid 2610 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2610 . . . . . 6 (Hom ‘𝑋) = (Hom ‘𝑋)
4 eqid 2610 . . . . . 6 (comp‘𝑋) = (comp‘𝑋)
5 catcoppccl.o . . . . . 6 𝑂 = (oppCat‘𝑋)
62, 3, 4, 5oppcval 16196 . . . . 5 (𝑋𝐵𝑂 = ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩))
71, 6syl 17 . . . 4 (𝜑𝑂 = ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩))
8 catcoppccl.1 . . . . 5 (𝜑𝑈 ∈ WUni)
9 inss1 3795 . . . . . . 7 (𝑈 ∩ Cat) ⊆ 𝑈
10 catcoppccl.c . . . . . . . . 9 𝐶 = (CatCat‘𝑈)
11 catcoppccl.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
1210, 11, 8catcbas 16570 . . . . . . . 8 (𝜑𝐵 = (𝑈 ∩ Cat))
131, 12eleqtrd 2690 . . . . . . 7 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
149, 13sseldi 3566 . . . . . 6 (𝜑𝑋𝑈)
15 df-hom 15793 . . . . . . . 8 Hom = Slot 14
16 catcoppccl.2 . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
178, 16wunndx 15711 . . . . . . . 8 (𝜑 → ndx ∈ 𝑈)
1815, 8, 17wunstr 15714 . . . . . . 7 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
1915, 8, 14wunstr 15714 . . . . . . . 8 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
208, 19wuntpos 9435 . . . . . . 7 (𝜑 → tpos (Hom ‘𝑋) ∈ 𝑈)
218, 18, 20wunop 9423 . . . . . 6 (𝜑 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩ ∈ 𝑈)
228, 14, 21wunsets 15728 . . . . 5 (𝜑 → (𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) ∈ 𝑈)
23 df-cco 15794 . . . . . . 7 comp = Slot 15
2423, 8, 17wunstr 15714 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
25 df-base 15700 . . . . . . . . . 10 Base = Slot 1
2625, 8, 14wunstr 15714 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
278, 26, 26wunxp 9425 . . . . . . . 8 (𝜑 → ((Base‘𝑋) × (Base‘𝑋)) ∈ 𝑈)
288, 27, 26wunxp 9425 . . . . . . 7 (𝜑 → (((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋)) ∈ 𝑈)
2923, 8, 14wunstr 15714 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
308, 29wunrn 9430 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
318, 30wununi 9407 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
328, 31wundm 9429 . . . . . . . . . . 11 (𝜑 → dom ran (comp‘𝑋) ∈ 𝑈)
338, 32wuncnv 9431 . . . . . . . . . 10 (𝜑dom ran (comp‘𝑋) ∈ 𝑈)
348wun0 9419 . . . . . . . . . . 11 (𝜑 → ∅ ∈ 𝑈)
358, 34wunsn 9417 . . . . . . . . . 10 (𝜑 → {∅} ∈ 𝑈)
368, 33, 35wunun 9411 . . . . . . . . 9 (𝜑 → (dom ran (comp‘𝑋) ∪ {∅}) ∈ 𝑈)
378, 31wunrn 9430 . . . . . . . . 9 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
388, 36, 37wunxp 9425 . . . . . . . 8 (𝜑 → ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈)
398, 38wunpw 9408 . . . . . . 7 (𝜑 → 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈)
40 tposssxp 7243 . . . . . . . . . . . 12 tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))
41 ovssunirn 6579 . . . . . . . . . . . . . . 15 (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋)
42 dmss 5245 . . . . . . . . . . . . . . 15 ((⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋) → dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋)
44 cnvss 5216 . . . . . . . . . . . . . 14 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋) → dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋))
45 unss1 3744 . . . . . . . . . . . . . 14 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋) → (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅}))
4643, 44, 45mp2b 10 . . . . . . . . . . . . 13 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅})
47 rnss 5275 . . . . . . . . . . . . . 14 ((⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋) → ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋))
4841, 47ax-mp 5 . . . . . . . . . . . . 13 ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋)
49 xpss12 5148 . . . . . . . . . . . . 13 (((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅}) ∧ ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋)) → ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5046, 48, 49mp2an 704 . . . . . . . . . . . 12 ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))
5140, 50sstri 3577 . . . . . . . . . . 11 tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))
52 elpw2g 4754 . . . . . . . . . . . 12 (((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈 → (tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))))
5338, 52syl 17 . . . . . . . . . . 11 (𝜑 → (tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))))
5451, 53mpbiri 247 . . . . . . . . . 10 (𝜑 → tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5554ralrimivw 2950 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5655ralrimivw 2950 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
57 eqid 2610 . . . . . . . . 9 (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) = (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))
5857fmpt2 7126 . . . . . . . 8 (∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5956, 58sylib 207 . . . . . . 7 (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
608, 28, 39, 59wunf 9428 . . . . . 6 (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ∈ 𝑈)
618, 24, 60wunop 9423 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩ ∈ 𝑈)
628, 22, 61wunsets 15728 . . . 4 (𝜑 → ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩) ∈ 𝑈)
637, 62eqeltrd 2688 . . 3 (𝜑𝑂𝑈)
64 inss2 3796 . . . . 5 (𝑈 ∩ Cat) ⊆ Cat
6564, 13sseldi 3566 . . . 4 (𝜑𝑋 ∈ Cat)
665oppccat 16205 . . . 4 (𝑋 ∈ Cat → 𝑂 ∈ Cat)
6765, 66syl 17 . . 3 (𝜑𝑂 ∈ Cat)
6863, 67elind 3760 . 2 (𝜑𝑂 ∈ (𝑈 ∩ Cat))
6968, 12eleqtrrd 2691 1 (𝜑𝑂𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wral 2896  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cop 4131   cuni 4372   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  ωcom 6957  1st c1st 7057  2nd c2nd 7058  tpos ctpos 7238  WUnicwun 9401  1c1 9816  4c4 10949  5c5 10950  cdc 11369  ndxcnx 15692   sSet csts 15693  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  oppCatcoppc 16194  CatCatccatc 16567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-wun 9403  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619  df-np 9682  df-plp 9684  df-ltp 9686  df-enr 9756  df-nr 9757  df-c 9821  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-oppc 16195  df-catc 16568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator