MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu Structured version   Visualization version   GIF version

Theorem wereu 5034
Description: A subset of a well-ordered set has a unique minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
wereu ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem wereu
StepHypRef Expression
1 wefr 5028 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 fri 5000 . . . . . 6 (((𝐵𝑉𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp32 629 . . . . 5 ((𝐵𝑉𝑅 Fr 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
43expcom 450 . . . 4 (𝑅 Fr 𝐴 → (𝐵𝑉 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
543imp2 1274 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
61, 5sylan 487 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
7 weso 5029 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
8 soss 4977 . . . . 5 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
97, 8mpan9 485 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
10 somo 4993 . . . 4 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
119, 10syl 17 . . 3 ((𝑅 We 𝐴𝐵𝐴) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
12113ad2antr2 1220 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
13 reu5 3136 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
146, 12, 13sylanbrc 695 1 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899  wss 3540  c0 3874   class class class wbr 4583   Or wor 4958   Fr wfr 4994   We wwe 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-po 4959  df-so 4960  df-fr 4997  df-we 4999
This theorem is referenced by:  htalem  8642  zorn2lem1  9201  dyadmax  23172  wessf1ornlem  38366
  Copyright terms: Public domain W3C validator