Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wessf1ornlem Structured version   Visualization version   GIF version

Theorem wessf1ornlem 38366
Description: Given a function 𝐹 on a well ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
wessf1ornlem.f (𝜑𝐹 Fn 𝐴)
wessf1ornlem.a (𝜑𝐴𝑉)
wessf1ornlem.r (𝜑𝑅 We 𝐴)
wessf1ornlem.g 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
Assertion
Ref Expression
wessf1ornlem (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem wessf1ornlem
Dummy variables 𝑡 𝑢 𝑣 𝑤 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5404 . . . . . . . . 9 (𝐹 “ {𝑢}) ⊆ dom 𝐹
21a1i 11 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ⊆ dom 𝐹)
3 wessf1ornlem.f . . . . . . . . . 10 (𝜑𝐹 Fn 𝐴)
4 fndm 5904 . . . . . . . . . 10 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
53, 4syl 17 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
65adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → dom 𝐹 = 𝐴)
72, 6sseqtrd 3604 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ⊆ 𝐴)
8 wessf1ornlem.r . . . . . . . . . 10 (𝜑𝑅 We 𝐴)
98adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → 𝑅 We 𝐴)
101, 5syl5sseq 3616 . . . . . . . . . . 11 (𝜑 → (𝐹 “ {𝑢}) ⊆ 𝐴)
11 wessf1ornlem.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
12 ssexg 4732 . . . . . . . . . . 11 (((𝐹 “ {𝑢}) ⊆ 𝐴𝐴𝑉) → (𝐹 “ {𝑢}) ∈ V)
1310, 11, 12syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑢}) ∈ V)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ∈ V)
15 inisegn0 5416 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐹 ↔ (𝐹 “ {𝑢}) ≠ ∅)
1615biimpi 205 . . . . . . . . . 10 (𝑢 ∈ ran 𝐹 → (𝐹 “ {𝑢}) ≠ ∅)
1716adantl 481 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ≠ ∅)
18 wereu 5034 . . . . . . . . 9 ((𝑅 We 𝐴 ∧ ((𝐹 “ {𝑢}) ∈ V ∧ (𝐹 “ {𝑢}) ⊆ 𝐴 ∧ (𝐹 “ {𝑢}) ≠ ∅)) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
199, 14, 7, 17, 18syl13anc 1320 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
20 riotacl 6525 . . . . . . . 8 (∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (𝐹 “ {𝑢}))
2119, 20syl 17 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (𝐹 “ {𝑢}))
227, 21sseldd 3569 . . . . . 6 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴)
2322ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴)
24 wessf1ornlem.g . . . . . . 7 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
25 sneq 4135 . . . . . . . . . . 11 (𝑦 = 𝑢 → {𝑦} = {𝑢})
2625imaeq2d 5385 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑢}))
2726raleqdv 3121 . . . . . . . . . 10 (𝑦 = 𝑢 → (∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥))
2826, 27riotaeqbidv 6514 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥))
29 breq1 4586 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → (𝑧𝑅𝑥𝑡𝑅𝑥))
3029notbid 307 . . . . . . . . . . . . . 14 (𝑧 = 𝑡 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑡𝑅𝑥))
3130cbvralv 3147 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥)
3231a1i 11 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥))
33 breq2 4587 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑡𝑅𝑥𝑡𝑅𝑣))
3433notbid 307 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (¬ 𝑡𝑅𝑥 ↔ ¬ 𝑡𝑅𝑣))
3534ralbidv 2969 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3632, 35bitrd 267 . . . . . . . . . . 11 (𝑥 = 𝑣 → (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3736cbvriotav 6522 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
3837a1i 11 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3928, 38eqtrd 2644 . . . . . . . 8 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
4039cbvmptv 4678 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
4124, 40eqtri 2632 . . . . . 6 𝐺 = (𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
4241rnmptss 6299 . . . . 5 (∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴 → ran 𝐺𝐴)
4323, 42syl 17 . . . 4 (𝜑 → ran 𝐺𝐴)
4411, 43ssexd 4733 . . . . 5 (𝜑 → ran 𝐺 ∈ V)
45 elpwg 4116 . . . . 5 (ran 𝐺 ∈ V → (ran 𝐺 ∈ 𝒫 𝐴 ↔ ran 𝐺𝐴))
4644, 45syl 17 . . . 4 (𝜑 → (ran 𝐺 ∈ 𝒫 𝐴 ↔ ran 𝐺𝐴))
4743, 46mpbird 246 . . 3 (𝜑 → ran 𝐺 ∈ 𝒫 𝐴)
48 dffn3 5967 . . . . . . . . . 10 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
4948biimpi 205 . . . . . . . . 9 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
503, 49syl 17 . . . . . . . 8 (𝜑𝐹:𝐴⟶ran 𝐹)
5150, 43fssresd 5984 . . . . . . 7 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹)
52 simpl 472 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → 𝜑)
53 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → 𝑤 ∈ ran 𝐺)
54 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → 𝑡 ∈ ran 𝐺)
55 simpl 472 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺))
56 fvres 6117 . . . . . . . . . . . . . . 15 (𝑤 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑤) = (𝐹𝑤))
5756eqcomd 2616 . . . . . . . . . . . . . 14 (𝑤 ∈ ran 𝐺 → (𝐹𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤))
5857ad2antrr 758 . . . . . . . . . . . . 13 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤))
59 simpr 476 . . . . . . . . . . . . 13 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡))
60 fvres 6117 . . . . . . . . . . . . . 14 (𝑡 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹𝑡))
6160ad2antlr 759 . . . . . . . . . . . . 13 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹𝑡))
6258, 59, 613eqtrd 2648 . . . . . . . . . . . 12 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = (𝐹𝑡))
63623adantl1 1210 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = (𝐹𝑡))
64 simpl1 1057 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝜑)
65 simpl3 1059 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑡 ∈ ran 𝐺)
66 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
6741elrnmpt 5293 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ V → (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)))
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
6968biimpi 205 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ran 𝐺 → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
7069adantr 480 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ran 𝐺 ∧ (𝐹𝑤) = (𝐹𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
71703ad2antl2 1217 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
7271, 68sylibr 223 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤 ∈ ran 𝐺)
73 id 22 . . . . . . . . . . . . . . . 16 ((𝐹𝑤) = (𝐹𝑡) → (𝐹𝑤) = (𝐹𝑡))
7473eqcomd 2616 . . . . . . . . . . . . . . 15 ((𝐹𝑤) = (𝐹𝑡) → (𝐹𝑡) = (𝐹𝑤))
7574adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝐹𝑡) = (𝐹𝑤))
76 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (𝑏 ∈ ran 𝐺𝑤 ∈ ran 𝐺))
77763anbi3d 1397 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ↔ (𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺)))
78 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (𝐹𝑏) = (𝐹𝑤))
7978eqeq2d 2620 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((𝐹𝑡) = (𝐹𝑏) ↔ (𝐹𝑡) = (𝐹𝑤)))
8077, 79anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑤 → (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) ↔ ((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤))))
81 breq1 4586 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → (𝑏𝑅𝑡𝑤𝑅𝑡))
8281notbid 307 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑤 → (¬ 𝑏𝑅𝑡 ↔ ¬ 𝑤𝑅𝑡))
8380, 82imbi12d 333 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → ((((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡) ↔ (((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤)) → ¬ 𝑤𝑅𝑡)))
84 eleq1 2676 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑡 → (𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺))
85843anbi2d 1396 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑡 → ((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ↔ (𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺)))
86 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑡 → (𝐹𝑎) = (𝐹𝑡))
8786eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑡 → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹𝑡) = (𝐹𝑏)))
8885, 87anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑡 → (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) ↔ ((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏))))
89 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑡 → (𝑏𝑅𝑎𝑏𝑅𝑡))
9089notbid 307 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑡 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑏𝑅𝑡))
9188, 90imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑡 → ((((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎) ↔ (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡)))
92 eleq1 2676 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺))
93923anbi3d 1397 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ↔ (𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺)))
94 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝐹𝑡) = (𝐹𝑏))
9594eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝐹𝑎) = (𝐹𝑡) ↔ (𝐹𝑎) = (𝐹𝑏)))
9693, 95anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) ↔ ((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏))))
97 breq1 4586 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (𝑡𝑅𝑎𝑏𝑅𝑎))
9897notbid 307 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (¬ 𝑡𝑅𝑎 ↔ ¬ 𝑏𝑅𝑎))
9996, 98imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → ((((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎) ↔ (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎)))
100 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑎 → (𝑤 ∈ ran 𝐺𝑎 ∈ ran 𝐺))
1011003anbi2d 1396 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ↔ (𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺)))
102 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑎 → (𝐹𝑤) = (𝐹𝑎))
103102eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ((𝐹𝑤) = (𝐹𝑡) ↔ (𝐹𝑎) = (𝐹𝑡)))
104101, 103anbi12d 743 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ↔ ((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡))))
105 breq2 4587 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → (𝑡𝑅𝑤𝑡𝑅𝑎))
106105notbid 307 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (¬ 𝑡𝑅𝑤 ↔ ¬ 𝑡𝑅𝑎))
107104, 106imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑎 → ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑤) ↔ (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎)))
108 nfv 1830 . . . . . . . . . . . . . . . . . . . . . 22 𝑢𝜑
109 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢𝑤
110 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑢(𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
11141, 110nfcxfr 2749 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑢𝐺
112111nfrn 5289 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢ran 𝐺
113109, 112nfel 2763 . . . . . . . . . . . . . . . . . . . . . 22 𝑢 𝑤 ∈ ran 𝐺
114112nfcri 2745 . . . . . . . . . . . . . . . . . . . . . 22 𝑢 𝑡 ∈ ran 𝐺
115108, 113, 114nf3an 1819 . . . . . . . . . . . . . . . . . . . . 21 𝑢(𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)
116 nfv 1830 . . . . . . . . . . . . . . . . . . . . 21 𝑢(𝐹𝑤) = (𝐹𝑡)
117115, 116nfan 1816 . . . . . . . . . . . . . . . . . . . 20 𝑢((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡))
118 nfv 1830 . . . . . . . . . . . . . . . . . . . 20 𝑢 ¬ 𝑡𝑅𝑤
119 simp3 1056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
120119eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤)
121 simp11 1084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝜑)
122 simp2 1055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑢 ∈ ran 𝐹)
123 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
124 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = 𝑤 → (𝑡𝑅𝑣𝑡𝑅𝑤))
125124notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑣 = 𝑤 → (¬ 𝑡𝑅𝑣 ↔ ¬ 𝑡𝑅𝑤))
126125ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 = 𝑤 → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
127126cbvriotav 6522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
128127a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
129123, 128eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)
1301293ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)
131126cbvreuv 3149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
13219, 131sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ ran 𝐹) → ∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
133 riota1 6529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ ran 𝐹) → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
1351343adant3 1074 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
136130, 135mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
137136simpld 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (𝐹 “ {𝑢}))
138121, 122, 119, 137syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (𝐹 “ {𝑢}))
139121, 122, 19syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
140126riota2 6533 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤))
141138, 139, 140syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤))
142120, 141mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
1431423adant1r 1311 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
14443sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑡 ∈ ran 𝐺) → 𝑡𝐴)
1451443adant2 1073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → 𝑡𝐴)
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑡𝐴)
1471463ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡𝐴)
14874ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝐹𝑡) = (𝐹𝑤))
1491483adant3 1074 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑡) = (𝐹𝑤))
150 fniniseg 6246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 Fn 𝐴 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
151121, 3, 1503syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
152138, 151mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢))
153152simprd 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑤) = 𝑢)
1541533adant1r 1311 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑤) = 𝑢)
155149, 154eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑡) = 𝑢)
156147, 155jca 553 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢))
157 fniniseg 6246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 Fn 𝐴 → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1583, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1591583ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
160159ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1611603adant3 1074 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
162156, 161mpbird 246 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡 ∈ (𝐹 “ {𝑢}))
163 rspa 2914 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤𝑡 ∈ (𝐹 “ {𝑢})) → ¬ 𝑡𝑅𝑤)
164143, 162, 163syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ¬ 𝑡𝑅𝑤)
1651643exp 1256 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝑢 ∈ ran 𝐹 → (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → ¬ 𝑡𝑅𝑤)))
166117, 118, 165rexlimd 3008 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → ¬ 𝑡𝑅𝑤))
16771, 166mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑤)
168107, 167chvarv 2251 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎)
16999, 168chvarv 2251 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎)
17091, 169chvarv 2251 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡)
17183, 170chvarv 2251 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤)) → ¬ 𝑤𝑅𝑡)
17264, 65, 72, 75, 171syl31anc 1321 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑤𝑅𝑡)
173172, 167jca 553 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤))
174 weso 5029 . . . . . . . . . . . . . . . 16 (𝑅 We 𝐴𝑅 Or 𝐴)
1758, 174syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 Or 𝐴)
176175adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑅 Or 𝐴)
1771763ad2antl1 1216 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑅 Or 𝐴)
17843sselda 3568 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ran 𝐺) → 𝑤𝐴)
1791783adant3 1074 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → 𝑤𝐴)
180179adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤𝐴)
181 sotrieq2 4987 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑡𝐴)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤)))
182177, 180, 146, 181syl12anc 1316 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤)))
183173, 182mpbird 246 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤 = 𝑡)
18455, 63, 183syl2anc 691 . . . . . . . . . 10 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → 𝑤 = 𝑡)
185184ex 449 . . . . . . . . 9 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
18652, 53, 54, 185syl3anc 1318 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
187186ralrimivva 2954 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
18851, 187jca 553 . . . . . 6 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)))
189 dff13 6416 . . . . . 6 ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)))
190188, 189sylibr 223 . . . . 5 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹)
191 riotaex 6515 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V
192191rgenw 2908 . . . . . . . . . . . . 13 𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V
193192a1i 11 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V)
19441fnmpt 5933 . . . . . . . . . . . 12 (∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V → 𝐺 Fn ran 𝐹)
195193, 194syl 17 . . . . . . . . . . 11 (𝜑𝐺 Fn ran 𝐹)
196 dffn3 5967 . . . . . . . . . . . 12 (𝐺 Fn ran 𝐹𝐺:ran 𝐹⟶ran 𝐺)
197196biimpi 205 . . . . . . . . . . 11 (𝐺 Fn ran 𝐹𝐺:ran 𝐹⟶ran 𝐺)
198195, 197syl 17 . . . . . . . . . 10 (𝜑𝐺:ran 𝐹⟶ran 𝐺)
199198ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ ran 𝐺)
200 fvres 6117 . . . . . . . . . . 11 ((𝐺𝑢) ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)) = (𝐹‘(𝐺𝑢)))
201199, 200syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)) = (𝐹‘(𝐺𝑢)))
20217, 15sylibr 223 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹)
203191a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V)
20441fvmpt2 6200 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran 𝐹 ∧ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V) → (𝐺𝑢) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
205202, 203, 204syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
206205, 21eqeltrd 2688 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ (𝐹 “ {𝑢}))
207 fvex 6113 . . . . . . . . . . . . . 14 (𝐺𝑢) ∈ V
208 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐺𝑢) → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝐺𝑢) ∈ (𝐹 “ {𝑢})))
209 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐺𝑢) → (𝑤𝐴 ↔ (𝐺𝑢) ∈ 𝐴))
210 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐺𝑢) → (𝐹𝑤) = (𝐹‘(𝐺𝑢)))
211210eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐺𝑢) → ((𝐹𝑤) = 𝑢 ↔ (𝐹‘(𝐺𝑢)) = 𝑢))
212209, 211anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐺𝑢) → ((𝑤𝐴 ∧ (𝐹𝑤) = 𝑢) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
213208, 212bibi12d 334 . . . . . . . . . . . . . . 15 (𝑤 = (𝐺𝑢) → ((𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)) ↔ ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢))))
214213imbi2d 329 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑢) → ((𝜑 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢))) ↔ (𝜑 → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))))
2153, 150syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
216207, 214, 215vtocl 3232 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
217216adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
218206, 217mpbid 221 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢))
219218simprd 478 . . . . . . . . . 10 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹‘(𝐺𝑢)) = 𝑢)
220201, 219eqtr2d 2645 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)))
221 fveq2 6103 . . . . . . . . . . 11 (𝑤 = (𝐺𝑢) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)))
222221eqeq2d 2620 . . . . . . . . . 10 (𝑤 = (𝐺𝑢) → (𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤) ↔ 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢))))
223222rspcev 3282 . . . . . . . . 9 (((𝐺𝑢) ∈ ran 𝐺𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢))) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
224199, 220, 223syl2anc 691 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
225224ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
22651, 225jca 553 . . . . . 6 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)))
227 dffo3 6282 . . . . . 6 ((𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)))
228226, 227sylibr 223 . . . . 5 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹)
229190, 228jca 553 . . . 4 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹))
230 df-f1o 5811 . . . 4 ((𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹))
231229, 230sylibr 223 . . 3 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹)
232 nfcv 2751 . . . . . 6 𝑣𝐹
233 nfcv 2751 . . . . . . . . 9 𝑣ran 𝐹
234 nfriota1 6518 . . . . . . . . 9 𝑣(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
235233, 234nfmpt 4674 . . . . . . . 8 𝑣(𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
23641, 235nfcxfr 2749 . . . . . . 7 𝑣𝐺
237236nfrn 5289 . . . . . 6 𝑣ran 𝐺
238232, 237nfres 5319 . . . . 5 𝑣(𝐹 ↾ ran 𝐺)
239238, 237, 233nff1o 6048 . . . 4 𝑣(𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹
240 reseq2 5312 . . . . 5 (𝑣 = ran 𝐺 → (𝐹𝑣) = (𝐹 ↾ ran 𝐺))
241 id 22 . . . . 5 (𝑣 = ran 𝐺𝑣 = ran 𝐺)
242 eqidd 2611 . . . . 5 (𝑣 = ran 𝐺 → ran 𝐹 = ran 𝐹)
243240, 241, 242f1oeq123d 6046 . . . 4 (𝑣 = ran 𝐺 → ((𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹))
244239, 243rspce 3277 . . 3 ((ran 𝐺 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹) → ∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹)
24547, 231, 244syl2anc 691 . 2 (𝜑 → ∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹)
246 reseq2 5312 . . . 4 (𝑣 = 𝑥 → (𝐹𝑣) = (𝐹𝑥))
247 id 22 . . . 4 (𝑣 = 𝑥𝑣 = 𝑥)
248 eqidd 2611 . . . 4 (𝑣 = 𝑥 → ran 𝐹 = ran 𝐹)
249246, 247, 248f1oeq123d 6046 . . 3 (𝑣 = 𝑥 → ((𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ (𝐹𝑥):𝑥1-1-onto→ran 𝐹))
250249cbvrexv 3148 . 2 (∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
251245, 250sylib 207 1 (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643   Or wor 4958   We wwe 4996  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  crio 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511
This theorem is referenced by:  wessf1orn  38367
  Copyright terms: Public domain W3C validator