MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcdi Structured version   Visualization version   GIF version

Theorem vcdi 26804
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcdi ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))

Proof of Theorem vcdi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 26800 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpl 472 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
65ralimi 2936 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
76adantl 481 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralimi 2936 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
983ad2ant3 1077 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
104, 9syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
11 oveq1 6556 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 6565 . . . . . 6 (𝑥 = 𝐵 → (𝑦𝑆(𝑥𝐺𝑧)) = (𝑦𝑆(𝐵𝐺𝑧)))
13 oveq2 6557 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1413oveq1d 6564 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)))
1512, 14eqeq12d 2625 . . . . 5 (𝑥 = 𝐵 → ((𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ↔ (𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧))))
16 oveq1 6556 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝑧)))
17 oveq1 6556 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝐵) = (𝐴𝑆𝐵))
18 oveq1 6556 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝑧) = (𝐴𝑆𝑧))
1917, 18oveq12d 6567 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)))
2016, 19eqeq12d 2625 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧))))
21 oveq2 6557 . . . . . . 7 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
2221oveq2d 6565 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝐶)))
23 oveq2 6557 . . . . . . 7 (𝑧 = 𝐶 → (𝐴𝑆𝑧) = (𝐴𝑆𝐶))
2423oveq2d 6565 . . . . . 6 (𝑧 = 𝐶 → ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
2522, 24eqeq12d 2625 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2615, 20, 25rspc3v 3296 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2710, 26syl5 33 . . 3 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
28273com12 1261 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2928impcom 445 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  AbelOpcablo 26782  CVecOLDcvc 26797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060  df-vc 26798
This theorem is referenced by:  nvdi  26869
  Copyright terms: Public domain W3C validator