MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vciOLD Structured version   Visualization version   GIF version

Theorem vciOLD 26800
Description: Obsolete version of cvsi 22738 as of 21-Sep-2021. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vciOLD (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem vciOLD
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . 5 𝐺 = (1st𝑊)
21eqeq2i 2622 . . . 4 (𝑔 = 𝐺𝑔 = (1st𝑊))
3 eleq1 2676 . . . . 5 (𝑔 = 𝐺 → (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp))
4 rneq 5272 . . . . . . 7 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
5 vciOLD.3 . . . . . . 7 𝑋 = ran 𝐺
64, 5syl6eqr 2662 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
7 xpeq2 5053 . . . . . . . 8 (ran 𝑔 = 𝑋 → (ℂ × ran 𝑔) = (ℂ × 𝑋))
87feq2d 5944 . . . . . . 7 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶ran 𝑔))
9 feq3 5941 . . . . . . 7 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × 𝑋)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
108, 9bitrd 267 . . . . . 6 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
116, 10syl 17 . . . . 5 (𝑔 = 𝐺 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
12 oveq 6555 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑥𝑔𝑧) = (𝑥𝐺𝑧))
1312oveq2d 6565 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑦𝑠(𝑥𝑔𝑧)) = (𝑦𝑠(𝑥𝐺𝑧)))
14 oveq 6555 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)))
1513, 14eqeq12d 2625 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
166, 15raleqbidv 3129 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
17 oveq 6555 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)))
1817eqeq2d 2620 . . . . . . . . . . 11 (𝑔 = 𝐺 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥))))
1918anbi1d 737 . . . . . . . . . 10 (𝑔 = 𝐺 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2019ralbidv 2969 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2116, 20anbi12d 743 . . . . . . . 8 (𝑔 = 𝐺 → ((∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2221ralbidv 2969 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2322anbi2d 736 . . . . . 6 (𝑔 = 𝐺 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
246, 23raleqbidv 3129 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
253, 11, 243anbi123d 1391 . . . 4 (𝑔 = 𝐺 → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
262, 25sylbir 224 . . 3 (𝑔 = (1st𝑊) → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
27 vciOLD.2 . . . . 5 𝑆 = (2nd𝑊)
2827eqeq2i 2622 . . . 4 (𝑠 = 𝑆𝑠 = (2nd𝑊))
29 feq1 5939 . . . . 5 (𝑠 = 𝑆 → (𝑠:(ℂ × 𝑋)⟶𝑋𝑆:(ℂ × 𝑋)⟶𝑋))
30 oveq 6555 . . . . . . . 8 (𝑠 = 𝑆 → (1𝑠𝑥) = (1𝑆𝑥))
3130eqeq1d 2612 . . . . . . 7 (𝑠 = 𝑆 → ((1𝑠𝑥) = 𝑥 ↔ (1𝑆𝑥) = 𝑥))
32 oveq 6555 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑦𝑠(𝑥𝐺𝑧)) = (𝑦𝑆(𝑥𝐺𝑧)))
33 oveq 6555 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥))
34 oveq 6555 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠𝑧) = (𝑦𝑆𝑧))
3533, 34oveq12d 6567 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
3632, 35eqeq12d 2625 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
3736ralbidv 2969 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
38 oveq 6555 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦 + 𝑧)𝑆𝑥))
39 oveq 6555 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑧𝑠𝑥) = (𝑧𝑆𝑥))
4033, 39oveq12d 6567 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
4138, 40eqeq12d 2625 . . . . . . . . . . 11 (𝑠 = 𝑆 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))))
42 oveq 6555 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦 · 𝑧)𝑠𝑥) = ((𝑦 · 𝑧)𝑆𝑥))
4339oveq2d 6565 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑠(𝑧𝑆𝑥)))
44 oveq 6555 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4543, 44eqtrd 2644 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4642, 45eqeq12d 2625 . . . . . . . . . . 11 (𝑠 = 𝑆 → (((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
4741, 46anbi12d 743 . . . . . . . . . 10 (𝑠 = 𝑆 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4847ralbidv 2969 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4937, 48anbi12d 743 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
5049ralbidv 2969 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
5131, 50anbi12d 743 . . . . . 6 (𝑠 = 𝑆 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5251ralbidv 2969 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5329, 523anbi23d 1394 . . . 4 (𝑠 = 𝑆 → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5428, 53sylbir 224 . . 3 (𝑠 = (2nd𝑊) → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5526, 54elopabi 7120 . 2 (𝑊 ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
56 df-vc 26798 . 2 CVecOLD = {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))}
5755, 56eleq2s 2706 1 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {copab 4642   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  AbelOpcablo 26782  CVecOLDcvc 26797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060  df-vc 26798
This theorem is referenced by:  vcsm  26801  vcidOLD  26803  vcdi  26804  vcdir  26805  vcass  26806  vcablo  26808
  Copyright terms: Public domain W3C validator