MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustn0 Structured version   Visualization version   GIF version

Theorem ustn0 21834
Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
ustn0 ¬ ∅ ∈ ran UnifOn

Proof of Theorem ustn0
Dummy variables 𝑣 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3878 . . . . 5 ¬ (𝑥 × 𝑥) ∈ ∅
2 0ex 4718 . . . . . 6 ∅ ∈ V
3 eleq2 2677 . . . . . 6 (𝑢 = ∅ → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑥 × 𝑥) ∈ ∅))
42, 3elab 3319 . . . . 5 (∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} ↔ (𝑥 × 𝑥) ∈ ∅)
51, 4mtbir 312 . . . 4 ¬ ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
6 vex 3176 . . . . . . 7 𝑥 ∈ V
7 selpw 4115 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
87abbii 2726 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
9 abid2 2732 . . . . . . . . . 10 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥)
106, 6xpex 6860 . . . . . . . . . . . 12 (𝑥 × 𝑥) ∈ V
1110pwex 4774 . . . . . . . . . . 11 𝒫 (𝑥 × 𝑥) ∈ V
1211pwex 4774 . . . . . . . . . 10 𝒫 𝒫 (𝑥 × 𝑥) ∈ V
139, 12eqeltri 2684 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V
148, 13eqeltrri 2685 . . . . . . . 8 {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V
15 simp1 1054 . . . . . . . . 9 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
1615ss2abi 3637 . . . . . . . 8 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
1714, 16ssexi 4731 . . . . . . 7 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V
18 df-ust 21814 . . . . . . . 8 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
1918fvmpt2 6200 . . . . . . 7 ((𝑥 ∈ V ∧ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V) → (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
206, 17, 19mp2an 704 . . . . . 6 (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))}
21 simp2 1055 . . . . . . 7 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → (𝑥 × 𝑥) ∈ 𝑢)
2221ss2abi 3637 . . . . . 6 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2320, 22eqsstri 3598 . . . . 5 (UnifOn‘𝑥) ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2423sseli 3564 . . . 4 (∅ ∈ (UnifOn‘𝑥) → ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢})
255, 24mto 187 . . 3 ¬ ∅ ∈ (UnifOn‘𝑥)
2625nex 1722 . 2 ¬ ∃𝑥∅ ∈ (UnifOn‘𝑥)
2718funmpt2 5841 . . . 4 Fun UnifOn
28 elunirn 6413 . . . 4 (Fun UnifOn → (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥)))
2927, 28ax-mp 5 . . 3 (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥))
30 ustfn 21815 . . . . 5 UnifOn Fn V
31 fndm 5904 . . . . 5 (UnifOn Fn V → dom UnifOn = V)
3230, 31ax-mp 5 . . . 4 dom UnifOn = V
3332rexeqi 3120 . . 3 (∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥))
34 rexv 3193 . . 3 (∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3529, 33, 343bitri 285 . 2 (∅ ∈ ran UnifOn ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3626, 35mtbir 312 1 ¬ ∅ ∈ ran UnifOn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   I cid 4948   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  Fun wfun 5798   Fn wfn 5799  cfv 5804  UnifOncust 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ust 21814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator