MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ust0 Structured version   Visualization version   GIF version

Theorem ust0 21833
Description: The unique uniform structure of the empty set is the empty set. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ust0 (UnifOn‘∅) = {{∅}}

Proof of Theorem ust0
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4718 . . . . . . . 8 ∅ ∈ V
2 isust 21817 . . . . . . . 8 (∅ ∈ V → (𝑢 ∈ (UnifOn‘∅) ↔ (𝑢 ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ ∅) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))))
31, 2ax-mp 5 . . . . . . 7 (𝑢 ∈ (UnifOn‘∅) ↔ (𝑢 ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ ∅) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))))
43simp1bi 1069 . . . . . 6 (𝑢 ∈ (UnifOn‘∅) → 𝑢 ⊆ 𝒫 (∅ × ∅))
5 0xp 5122 . . . . . . . 8 (∅ × ∅) = ∅
65pweqi 4112 . . . . . . 7 𝒫 (∅ × ∅) = 𝒫 ∅
7 pw0 4283 . . . . . . 7 𝒫 ∅ = {∅}
86, 7eqtri 2632 . . . . . 6 𝒫 (∅ × ∅) = {∅}
94, 8syl6sseq 3614 . . . . 5 (𝑢 ∈ (UnifOn‘∅) → 𝑢 ⊆ {∅})
10 ustbasel 21820 . . . . . . 7 (𝑢 ∈ (UnifOn‘∅) → (∅ × ∅) ∈ 𝑢)
115, 10syl5eqelr 2693 . . . . . 6 (𝑢 ∈ (UnifOn‘∅) → ∅ ∈ 𝑢)
1211snssd 4281 . . . . 5 (𝑢 ∈ (UnifOn‘∅) → {∅} ⊆ 𝑢)
139, 12eqssd 3585 . . . 4 (𝑢 ∈ (UnifOn‘∅) → 𝑢 = {∅})
14 velsn 4141 . . . 4 (𝑢 ∈ {{∅}} ↔ 𝑢 = {∅})
1513, 14sylibr 223 . . 3 (𝑢 ∈ (UnifOn‘∅) → 𝑢 ∈ {{∅}})
1615ssriv 3572 . 2 (UnifOn‘∅) ⊆ {{∅}}
178eqimss2i 3623 . . . 4 {∅} ⊆ 𝒫 (∅ × ∅)
181snid 4155 . . . . 5 ∅ ∈ {∅}
195, 18eqeltri 2684 . . . 4 (∅ × ∅) ∈ {∅}
2018a1i 11 . . . . . 6 (∅ ⊆ ∅ → ∅ ∈ {∅})
218raleqi 3119 . . . . . . 7 (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ ∀𝑤 ∈ {∅} (∅ ⊆ 𝑤𝑤 ∈ {∅}))
22 sseq2 3590 . . . . . . . . 9 (𝑤 = ∅ → (∅ ⊆ 𝑤 ↔ ∅ ⊆ ∅))
23 eleq1 2676 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 ∈ {∅} ↔ ∅ ∈ {∅}))
2422, 23imbi12d 333 . . . . . . . 8 (𝑤 = ∅ → ((∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ ∅ → ∅ ∈ {∅})))
251, 24ralsn 4169 . . . . . . 7 (∀𝑤 ∈ {∅} (∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ ∅ → ∅ ∈ {∅}))
2621, 25bitri 263 . . . . . 6 (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ ∅ → ∅ ∈ {∅}))
2720, 26mpbir 220 . . . . 5 𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅})
28 inidm 3784 . . . . . . 7 (∅ ∩ ∅) = ∅
2928, 18eqeltri 2684 . . . . . 6 (∅ ∩ ∅) ∈ {∅}
30 ineq2 3770 . . . . . . . 8 (𝑤 = ∅ → (∅ ∩ 𝑤) = (∅ ∩ ∅))
3130eleq1d 2672 . . . . . . 7 (𝑤 = ∅ → ((∅ ∩ 𝑤) ∈ {∅} ↔ (∅ ∩ ∅) ∈ {∅}))
321, 31ralsn 4169 . . . . . 6 (∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅} ↔ (∅ ∩ ∅) ∈ {∅})
3329, 32mpbir 220 . . . . 5 𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅}
34 res0 5321 . . . . . . 7 ( I ↾ ∅) = ∅
3534eqimssi 3622 . . . . . 6 ( I ↾ ∅) ⊆ ∅
36 cnv0 5454 . . . . . . 7 ∅ = ∅
3736, 18eqeltri 2684 . . . . . 6 ∅ ∈ {∅}
38 0trrel 13568 . . . . . . 7 (∅ ∘ ∅) ⊆ ∅
39 id 22 . . . . . . . . . 10 (𝑤 = ∅ → 𝑤 = ∅)
4039, 39coeq12d 5208 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑤) = (∅ ∘ ∅))
4140sseq1d 3595 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑤) ⊆ ∅ ↔ (∅ ∘ ∅) ⊆ ∅))
421, 41rexsn 4170 . . . . . . 7 (∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅ ↔ (∅ ∘ ∅) ⊆ ∅)
4338, 42mpbir 220 . . . . . 6 𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅
4435, 37, 433pm3.2i 1232 . . . . 5 (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅)
45 sseq1 3589 . . . . . . . . 9 (𝑣 = ∅ → (𝑣𝑤 ↔ ∅ ⊆ 𝑤))
4645imbi1d 330 . . . . . . . 8 (𝑣 = ∅ → ((𝑣𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ 𝑤𝑤 ∈ {∅})))
4746ralbidv 2969 . . . . . . 7 (𝑣 = ∅ → (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ↔ ∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅})))
48 ineq1 3769 . . . . . . . . 9 (𝑣 = ∅ → (𝑣𝑤) = (∅ ∩ 𝑤))
4948eleq1d 2672 . . . . . . . 8 (𝑣 = ∅ → ((𝑣𝑤) ∈ {∅} ↔ (∅ ∩ 𝑤) ∈ {∅}))
5049ralbidv 2969 . . . . . . 7 (𝑣 = ∅ → (∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ↔ ∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅}))
51 sseq2 3590 . . . . . . . 8 (𝑣 = ∅ → (( I ↾ ∅) ⊆ 𝑣 ↔ ( I ↾ ∅) ⊆ ∅))
52 cnveq 5218 . . . . . . . . 9 (𝑣 = ∅ → 𝑣 = ∅)
5352eleq1d 2672 . . . . . . . 8 (𝑣 = ∅ → (𝑣 ∈ {∅} ↔ ∅ ∈ {∅}))
54 sseq2 3590 . . . . . . . . 9 (𝑣 = ∅ → ((𝑤𝑤) ⊆ 𝑣 ↔ (𝑤𝑤) ⊆ ∅))
5554rexbidv 3034 . . . . . . . 8 (𝑣 = ∅ → (∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅))
5651, 53, 553anbi123d 1391 . . . . . . 7 (𝑣 = ∅ → ((( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅)))
5747, 50, 563anbi123d 1391 . . . . . 6 (𝑣 = ∅ → ((∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅))))
581, 57ralsn 4169 . . . . 5 (∀𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅)))
5927, 33, 44, 58mpbir3an 1237 . . . 4 𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣))
60 isust 21817 . . . . 5 (∅ ∈ V → ({∅} ∈ (UnifOn‘∅) ↔ ({∅} ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ {∅} ∧ ∀𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣)))))
611, 60ax-mp 5 . . . 4 ({∅} ∈ (UnifOn‘∅) ↔ ({∅} ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ {∅} ∧ ∀𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣))))
6217, 19, 59, 61mpbir3an 1237 . . 3 {∅} ∈ (UnifOn‘∅)
63 snssi 4280 . . 3 ({∅} ∈ (UnifOn‘∅) → {{∅}} ⊆ (UnifOn‘∅))
6462, 63ax-mp 5 . 2 {{∅}} ⊆ (UnifOn‘∅)
6516, 64eqssi 3584 1 (UnifOn‘∅) = {{∅}}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   I cid 4948   × cxp 5036  ccnv 5037  cres 5040  ccom 5042  cfv 5804  UnifOncust 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ust 21814
This theorem is referenced by:  isusp  21875
  Copyright terms: Public domain W3C validator