Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrspanop Structured version   Visualization version   GIF version

Theorem uhgrspanop 40520
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrspanop (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph )

Proof of Theorem uhgrspanop
StepHypRef Expression
1 uhgrspanop.v . 2 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . 2 𝐸 = (iEdg‘𝐺)
3 opex 4859 . . 3 𝑉, (𝐸𝐴)⟩ ∈ V
43a1i 11 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ V)
5 fvex 6113 . . . . 5 (Vtx‘𝐺) ∈ V
61, 5eqeltri 2684 . . . 4 𝑉 ∈ V
7 fvex 6113 . . . . . 6 (iEdg‘𝐺) ∈ V
82, 7eqeltri 2684 . . . . 5 𝐸 ∈ V
98resex 5363 . . . 4 (𝐸𝐴) ∈ V
10 opvtxfv 25681 . . . 4 ((𝑉 ∈ V ∧ (𝐸𝐴) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
116, 9, 10mp2an 704 . . 3 (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉
1211a1i 11 . 2 (𝐺 ∈ UHGraph → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
13 opiedgfv 25684 . . . 4 ((𝑉 ∈ V ∧ (𝐸𝐴) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
146, 9, 13mp2an 704 . . 3 (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴)
1514a1i 11 . 2 (𝐺 ∈ UHGraph → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
16 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph )
171, 2, 4, 12, 15, 16uhgrspan 40516 1 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131  cres 5040  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-1st 7059  df-2nd 7060  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-edga 25793  df-subgr 40492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator