Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglblem Structured version   Visualization version   GIF version

Theorem tosglblem 29000
Description: Lemma for tosglb 29001 and xrsclat 29011. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
tosglb.e = (le‘𝐾)
Assertion
Ref Expression
tosglblem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem tosglblem
StepHypRef Expression
1 tosglb.1 . . . . . . 7 (𝜑𝐾 ∈ Toset)
21ad2antrr 758 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 tosglb.2 . . . . . . . 8 (𝜑𝐴𝐵)
43adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐴𝐵)
54sselda 3568 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
6 simplr 788 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
7 tosglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 tosglb.e . . . . . . 7 = (le‘𝐾)
9 tosglb.l . . . . . . 7 < = (lt‘𝐾)
107, 8, 9tltnle 28993 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑎𝐵) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
112, 5, 6, 10syl3anc 1318 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
1211con2bid 343 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 𝑏 ↔ ¬ 𝑏 < 𝑎))
1312ralbidva 2968 . . 3 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑎 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎))
143ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3569 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 28993 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
181, 17syl3an1 1351 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
19183com23 1263 . . . . . . . . . . . . 13 ((𝜑𝑐𝐵𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
20193expa 1257 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
2120con2bid 343 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2216, 21syldan 486 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2322ralbidva 2968 . . . . . . . . 9 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑐))
24 breq1 4586 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏 < 𝑐𝑑 < 𝑐))
2524notbid 307 . . . . . . . . . . 11 (𝑏 = 𝑑 → (¬ 𝑏 < 𝑐 ↔ ¬ 𝑑 < 𝑐))
2625cbvralv 3147 . . . . . . . . . 10 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ∀𝑑𝐴 ¬ 𝑑 < 𝑐)
27 ralnex 2975 . . . . . . . . . 10 (∀𝑑𝐴 ¬ 𝑑 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2826, 27bitri 263 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2923, 28syl6bb 275 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
3029adantlr 747 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
311ad2antrr 758 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
32 simplr 788 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
33 simpr 476 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
347, 8, 9tltnle 28993 . . . . . . . . 9 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3531, 32, 33, 34syl3anc 1318 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3635con2bid 343 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 𝑎 ↔ ¬ 𝑎 < 𝑐))
3730, 36imbi12d 333 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐)))
38 con34b 305 . . . . . 6 ((𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐))
3937, 38syl6bbr 277 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4039ralbidva 2968 . . . 4 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
41 breq2 4587 . . . . . 6 (𝑏 = 𝑐 → (𝑎 < 𝑏𝑎 < 𝑐))
42 breq2 4587 . . . . . . 7 (𝑏 = 𝑐 → (𝑑 < 𝑏𝑑 < 𝑐))
4342rexbidv 3034 . . . . . 6 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑑 < 𝑏 ↔ ∃𝑑𝐴 𝑑 < 𝑐))
4441, 43imbi12d 333 . . . . 5 (𝑏 = 𝑐 → ((𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4544cbvralv 3147 . . . 4 (∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐))
4640, 45syl6bbr 277 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
4713, 46anbi12d 743 . 2 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))))
48 vex 3176 . . . . . 6 𝑎 ∈ V
49 vex 3176 . . . . . 6 𝑏 ∈ V
5048, 49brcnv 5227 . . . . 5 (𝑎 < 𝑏𝑏 < 𝑎)
5150notbii 309 . . . 4 𝑎 < 𝑏 ↔ ¬ 𝑏 < 𝑎)
5251ralbii 2963 . . 3 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
5349, 48brcnv 5227 . . . . 5 (𝑏 < 𝑎𝑎 < 𝑏)
54 vex 3176 . . . . . . 7 𝑑 ∈ V
5549, 54brcnv 5227 . . . . . 6 (𝑏 < 𝑑𝑑 < 𝑏)
5655rexbii 3023 . . . . 5 (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑑 < 𝑏)
5753, 56imbi12i 339 . . . 4 ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5857ralbii 2963 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5952, 58anbi12i 729 . 2 ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
6047, 59syl6bbr 277 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  ccnv 5037  cfv 5804  Basecbs 15695  lecple 15775  ltcplt 16764  Tosetctos 16856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-preset 16751  df-poset 16769  df-plt 16781  df-toset 16857
This theorem is referenced by:  tosglb  29001  xrsclat  29011
  Copyright terms: Public domain W3C validator