Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tltnle | Structured version Visualization version GIF version |
Description: In a Toset, less-than is equivalent to not inverse less-than-or-equal see pltnle 16789. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
tleile.l | ⊢ ≤ = (le‘𝐾) |
tltnle.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
tltnle | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tospos 28989 | . . 3 ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) | |
2 | tleile.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tleile.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | tltnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
5 | 2, 3, 4 | pltval3 16790 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
6 | 1, 5 | syl3an1 1351 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
7 | 2, 3 | tleile 28992 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
8 | ibar 524 | . . . 4 ⊢ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) → (¬ 𝑌 ≤ 𝑋 ↔ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) ∧ ¬ 𝑌 ≤ 𝑋))) | |
9 | pm5.61 745 | . . . 4 ⊢ (((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) ∧ ¬ 𝑌 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋)) | |
10 | 8, 9 | syl6rbb 276 | . . 3 ⊢ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋) ↔ ¬ 𝑌 ≤ 𝑋)) |
11 | 7, 10 | syl 17 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋) ↔ ¬ 𝑌 ≤ 𝑋)) |
12 | 6, 11 | bitrd 267 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 Posetcpo 16763 ltcplt 16764 Tosetctos 16856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-preset 16751 df-poset 16769 df-plt 16781 df-toset 16857 |
This theorem is referenced by: tlt2 28995 toslublem 28998 tosglblem 29000 isarchi2 29070 archirng 29073 archiabllem2c 29080 archiabl 29083 |
Copyright terms: Public domain | W3C validator |