Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2 Structured version   Visualization version   GIF version

Theorem tfr2 7381
 Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47. Here we show that the function 𝐹 has the property that for any function 𝐺 whatsoever, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by NM, 9-Apr-1995.) (Revised by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2
StepHypRef Expression
1 tfr.1 . . . . 5 𝐹 = recs(𝐺)
21tfr1 7380 . . . 4 𝐹 Fn On
3 fndm 5904 . . . 4 (𝐹 Fn On → dom 𝐹 = On)
42, 3ax-mp 5 . . 3 dom 𝐹 = On
54eleq2i 2680 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ On)
61tfr2a 7378 . 2 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
75, 6sylbir 224 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  dom cdm 5038   ↾ cres 5040  Oncon0 5640   Fn wfn 5799  ‘cfv 5804  recscrecs 7354 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-wrecs 7294  df-recs 7355 This theorem is referenced by:  tfr3  7382  recsval  7387  rdgval  7403  dfac8alem  8735  dfac12lem1  8848  zorn2lem1  9201  ttukeylem3  9216
 Copyright terms: Public domain W3C validator