MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchval Structured version   Visualization version   GIF version

Theorem tchval 22825
Description: Define a function to augment a pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchval.v 𝑉 = (Base‘𝑊)
tchval.h , = (·𝑖𝑊)
Assertion
Ref Expression
tchval 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊

Proof of Theorem tchval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tchval.n . 2 𝐺 = (toℂHil‘𝑊)
2 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
3 fveq2 6103 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 tchval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2662 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6103 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖𝑤) = (·𝑖𝑊))
7 tchval.h . . . . . . . . 9 , = (·𝑖𝑊)
86, 7syl6eqr 2662 . . . . . . . 8 (𝑤 = 𝑊 → (·𝑖𝑤) = , )
98oveqd 6566 . . . . . . 7 (𝑤 = 𝑊 → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
109fveq2d 6107 . . . . . 6 (𝑤 = 𝑊 → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
115, 10mpteq12dv 4663 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
122, 11oveq12d 6567 . . . 4 (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
13 df-tch 22777 . . . 4 toℂHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
14 ovex 6577 . . . 4 (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V
1512, 13, 14fvmpt 6191 . . 3 (𝑊 ∈ V → (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
16 fvprc 6097 . . . 4 𝑊 ∈ V → (toℂHil‘𝑊) = ∅)
17 reldmtng 22252 . . . . 5 Rel dom toNrmGrp
1817ovprc1 6582 . . . 4 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅)
1916, 18eqtr4d 2647 . . 3 𝑊 ∈ V → (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
2015, 19pm2.61i 175 . 2 (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
211, 20eqtri 2632 1 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  cmpt 4643  cfv 5804  (class class class)co 6549  csqrt 13821  Basecbs 15695  ·𝑖cip 15773   toNrmGrp ctng 22193  toℂHilctch 22775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-tng 22199  df-tch 22777
This theorem is referenced by:  tchbas  22826  tchplusg  22827  tchmulr  22829  tchsca  22830  tchvsca  22831  tchip  22832  tchtopn  22833  tchnmfval  22835  tchds  22838  tchcph  22844
  Copyright terms: Public domain W3C validator