Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtng Structured version   Visualization version   GIF version

Theorem reldmtng 22252
 Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.)
Assertion
Ref Expression
reldmtng Rel dom toNrmGrp

Proof of Theorem reldmtng
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tng 22199 . 2 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
21reldmmpt2 6669 1 Rel dom toNrmGrp
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3173  ⟨cop 4131  dom cdm 5038   ∘ ccom 5042  Rel wrel 5043  ‘cfv 5804  (class class class)co 6549  ndxcnx 15692   sSet csts 15693  TopSetcts 15774  distcds 15777  -gcsg 17247  MetOpencmopn 19557   toNrmGrp ctng 22193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-dm 5048  df-oprab 6553  df-mpt2 6554  df-tng 22199 This theorem is referenced by:  tnglem  22254  tngds  22262  tchval  22825
 Copyright terms: Public domain W3C validator