MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchval Structured version   Unicode version

Theorem tchval 21527
Description: Define a function to augment a pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchval.v  |-  V  =  ( Base `  W
)
tchval.h  |-  .,  =  ( .i `  W )
Assertion
Ref Expression
tchval  |-  G  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) )
Distinct variable groups:    x,  .,    x, G   
x, V    x, W

Proof of Theorem tchval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 tchval.n . 2  |-  G  =  (toCHil `  W )
2 id 22 . . . . 5  |-  ( w  =  W  ->  w  =  W )
3 fveq2 5852 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 tchval.v . . . . . . 7  |-  V  =  ( Base `  W
)
53, 4syl6eqr 2500 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  V )
6 fveq2 5852 . . . . . . . . 9  |-  ( w  =  W  ->  ( .i `  w )  =  ( .i `  W
) )
7 tchval.h . . . . . . . . 9  |-  .,  =  ( .i `  W )
86, 7syl6eqr 2500 . . . . . . . 8  |-  ( w  =  W  ->  ( .i `  w )  = 
.,  )
98oveqd 6294 . . . . . . 7  |-  ( w  =  W  ->  (
x ( .i `  w ) x )  =  ( x  .,  x ) )
109fveq2d 5856 . . . . . 6  |-  ( w  =  W  ->  ( sqr `  ( x ( .i `  w ) x ) )  =  ( sqr `  (
x  .,  x )
) )
115, 10mpteq12dv 4511 . . . . 5  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  |->  ( sqr `  ( x ( .i
`  w ) x ) ) )  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )
122, 11oveq12d 6295 . . . 4  |-  ( w  =  W  ->  (
w toNrmGrp  ( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) ) )
13 df-tch 21482 . . . 4  |- toCHil  =  ( w  e.  _V  |->  ( w toNrmGrp  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) ) )
14 ovex 6305 . . . 4  |-  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )  e. 
_V
1512, 13, 14fvmpt 5937 . . 3  |-  ( W  e.  _V  ->  (toCHil `  W )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
16 fvprc 5846 . . . 4  |-  ( -.  W  e.  _V  ->  (toCHil `  W )  =  (/) )
17 reldmtng 21018 . . . . 5  |-  Rel  dom toNrmGrp
1817ovprc1 6308 . . . 4  |-  ( -.  W  e.  _V  ->  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )  =  (/) )
1916, 18eqtr4d 2485 . . 3  |-  ( -.  W  e.  _V  ->  (toCHil `  W )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
2015, 19pm2.61i 164 . 2  |-  (toCHil `  W )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )
211, 20eqtri 2470 1  |-  G  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1381    e. wcel 1802   _Vcvv 3093   (/)c0 3767    |-> cmpt 4491   ` cfv 5574  (class class class)co 6277   sqrcsqrt 13040   Basecbs 14504   .icip 14574   toNrmGrp ctng 20965  toCHilctch 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-iota 5537  df-fun 5576  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-tng 20971  df-tch 21482
This theorem is referenced by:  tchbas  21528  tchplusg  21529  tchmulr  21531  tchsca  21532  tchvsca  21533  tchip  21534  tchtopn  21535  tchnmfval  21537  tchds  21540  tchcph  21546
  Copyright terms: Public domain W3C validator