Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldanl Structured version   Visualization version   GIF version

Theorem syldanl 731
 Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
syldanl.1 ((𝜑𝜓) → 𝜒)
syldanl.2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
syldanl (((𝜑𝜓) ∧ 𝜃) → 𝜏)

Proof of Theorem syldanl
StepHypRef Expression
1 syldanl.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 449 . . 3 (𝜑 → (𝜓𝜒))
32imdistani 722 . 2 ((𝜑𝜓) → (𝜑𝜒))
4 syldanl.2 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
53, 4sylan 487 1 (((𝜑𝜓) ∧ 𝜃) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by:  trust  21843  submateq  29203  heibor1lem  32778  idlnegcl  32991  igenmin  33033  binomcxplemnotnn0  37577  vonioolem1  39571  vonicclem1  39574
 Copyright terms: Public domain W3C validator