Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 729 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 729 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | ancom 465 | . 2 ⊢ ((𝜓 ∧ 𝜃) ↔ (𝜃 ∧ 𝜓)) | |
5 | 3, 4 | bitri 263 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 |
This theorem is referenced by: eu1 2498 compleq 3714 opelopabsbALT 4909 cnvpo 5590 f1cnvcnv 6022 cnvimadfsn 7191 oppcsect 16261 odupos 16958 oppr1 18457 ordtrest2 20818 3cyclfrgrarn1 26539 mdsldmd1i 28574 oduprs 28987 ordtrest2NEW 29297 cnvco1 30903 cnvco2 30904 pocnv 30907 dfiota3 31200 brcup 31216 brcap 31217 dfrdg4 31228 trer 31480 bj-ssbequ2 31832 dffrege115 37292 3cyclfrgrrn1 41455 frgr2wwlkeqm 41496 |
Copyright terms: Public domain | W3C validator |