Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sndisj Structured version   Visualization version   GIF version

Theorem sndisj 4574
 Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj 𝑥𝐴 {𝑥}

Proof of Theorem sndisj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4555 . 2 (Disj 𝑥𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
2 moeq 3349 . . 3 ∃*𝑥 𝑥 = 𝑦
3 simpr 476 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥})
4 velsn 4141 . . . . . 6 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
53, 4sylib 207 . . . . 5 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 = 𝑥)
65equcomd 1933 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑥 = 𝑦)
76moimi 2508 . . 3 (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
82, 7ax-mp 5 . 2 ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥})
91, 8mpgbir 1717 1 Disj 𝑥𝐴 {𝑥}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∈ wcel 1977  ∃*wmo 2459  {csn 4125  Disj wdisj 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rmo 2904  df-v 3175  df-sn 4126  df-disj 4554 This theorem is referenced by:  0disj  4575  sibfof  29729  disjsnxp  38265  vonct  39584
 Copyright terms: Public domain W3C validator