Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3924 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 2908 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 4574 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 4556 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 2896 ⊆ wss 3540 ∅c0 3874 {csn 4125 Disj wdisj 4553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rmo 2904 df-v 3175 df-dif 3543 df-in 3547 df-ss 3554 df-nul 3875 df-sn 4126 df-disj 4554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |