Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss2 Structured version   Visualization version   GIF version

Theorem disjss2 4556
 Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))

Proof of Theorem disjss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3562 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 2936 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rmoim 3374 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
54alimdv 1832 . 2 (∀𝑥𝐴 𝐵𝐶 → (∀𝑦∃*𝑥𝐴 𝑦𝐶 → ∀𝑦∃*𝑥𝐴 𝑦𝐵))
6 df-disj 4554 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
7 df-disj 4554 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
85, 6, 73imtr4g 284 1 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473   ∈ wcel 1977  ∀wral 2896  ∃*wrmo 2899   ⊆ wss 3540  Disj wdisj 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-ral 2901  df-rmo 2904  df-in 3547  df-ss 3554  df-disj 4554 This theorem is referenced by:  disjeq2  4557  0disj  4575  uniioombllem2  23157  uniioombllem4  23160  disjxwwlks  26264  disjxwwlkn  26273  usgreghash2spotv  26593  fsumiunss  38642  disjxwwlksn  41110  av-disjxwwlkn  41119  fusgreghash2wspv  41499
 Copyright terms: Public domain W3C validator