Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version |
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngoablo 32877 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
3 | ablogrpo 26785 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 1st c1st 7057 GrpOpcgr 26727 AbelOpcablo 26782 RingOpscrngo 32863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-1st 7059 df-2nd 7060 df-ablo 26783 df-rngo 32864 |
This theorem is referenced by: rngone0 32880 rngogcl 32881 rngoaass 32883 rngorcan 32886 rngolcan 32887 rngo0cl 32888 rngo0rid 32889 rngo0lid 32890 rngolz 32891 rngorz 32892 rngosn3 32893 rngonegcl 32896 rngoaddneg1 32897 rngoaddneg2 32898 rngosub 32899 rngodm1dm2 32901 rngorn1 32902 rngonegmn1l 32910 rngonegmn1r 32911 rngogrphom 32940 rngohom0 32941 rngohomsub 32942 rngokerinj 32944 keridl 33001 dmncan1 33045 |
Copyright terms: Public domain | W3C validator |