Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorz Structured version   Visualization version   GIF version

Theorem rngorz 32892
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1 𝑍 = (GId‘𝐺)
ringlz.2 𝑋 = ran 𝐺
ringlz.3 𝐺 = (1st𝑅)
ringlz.4 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngorz ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = 𝑍)

Proof of Theorem rngorz
StepHypRef Expression
1 ringlz.3 . . . . . . 7 𝐺 = (1st𝑅)
21rngogrpo 32879 . . . . . 6 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringlz.2 . . . . . . . 8 𝑋 = ran 𝐺
4 ringlz.1 . . . . . . . 8 𝑍 = (GId‘𝐺)
53, 4grpoidcl 26752 . . . . . . 7 (𝐺 ∈ GrpOp → 𝑍𝑋)
63, 4grpolid 26754 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑍𝑋) → (𝑍𝐺𝑍) = 𝑍)
75, 6mpdan 699 . . . . . 6 (𝐺 ∈ GrpOp → (𝑍𝐺𝑍) = 𝑍)
82, 7syl 17 . . . . 5 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
98adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝑍) = 𝑍)
109oveq2d 6565 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = (𝐴𝐻𝑍))
11 simpr 476 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴𝑋)
121, 3, 4rngo0cl 32888 . . . . . 6 (𝑅 ∈ RingOps → 𝑍𝑋)
1312adantr 480 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑍𝑋)
1411, 13, 133jca 1235 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝑋𝑍𝑋𝑍𝑋))
15 ringlz.4 . . . . 5 𝐻 = (2nd𝑅)
161, 15, 3rngodi 32873 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝑍𝑋𝑍𝑋)) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)))
1714, 16syldan 486 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)))
182adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐺 ∈ GrpOp)
191, 15, 3rngocl 32870 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐻𝑍) ∈ 𝑋)
2013, 19mpd3an3 1417 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) ∈ 𝑋)
213, 4grpolid 26754 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝑍𝐺(𝐴𝐻𝑍)) = (𝐴𝐻𝑍))
2221eqcomd 2616 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍)))
2318, 20, 22syl2anc 691 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍)))
2410, 17, 233eqtr3d 2652 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)))
253grporcan 26756 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐻𝑍) ∈ 𝑋𝑍𝑋 ∧ (𝐴𝐻𝑍) ∈ 𝑋)) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍))
2618, 20, 13, 20, 25syl13anc 1320 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍))
2724, 26mpbid 221 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  ran crn 5039  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  GrpOpcgr 26727  GIdcgi 26728  RingOpscrngo 32863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-riota 6511  df-ov 6552  df-1st 7059  df-2nd 7060  df-grpo 26731  df-gid 26732  df-ablo 26783  df-rngo 32864
This theorem is referenced by:  rngoueqz  32909  rngonegmn1r  32911  zerdivemp1x  32916  0idl  32994  keridl  33001
  Copyright terms: Public domain W3C validator