Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogcl Structured version   Visualization version   GIF version

Theorem rngogcl 32881
 Description: Closure law for the addition (group) operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringgcl.1 𝐺 = (1st𝑅)
ringgcl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngogcl ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem rngogcl
StepHypRef Expression
1 ringgcl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 32879 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringgcl.2 . . 3 𝑋 = ran 𝐺
43grpocl 26738 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
52, 4syl3an1 1351 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ran crn 5039  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  GrpOpcgr 26727  RingOpscrngo 32863 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060  df-grpo 26731  df-ablo 26783  df-rngo 32864 This theorem is referenced by:  rngohomco  32943  rngoisocnv  32950  rngoidl  32993  keridl  33001  prnc  33036
 Copyright terms: Public domain W3C validator