Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovcnvfvd Structured version   Visualization version   GIF version

Theorem rfovcnvfvd 37321
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovcnvf1od.f 𝐹 = (𝐴𝑂𝐵)
rfovcnvfv.g (𝜑𝐺 ∈ (𝒫 𝐵𝑚 𝐴))
Assertion
Ref Expression
rfovcnvfvd (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑥,𝐺,𝑦   𝑊,𝑎,𝑥   𝜑,𝑎,𝑏,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑦,𝑟,𝑏)

Proof of Theorem rfovcnvfvd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
2 rfovd.a . . 3 (𝜑𝐴𝑉)
3 rfovd.b . . 3 (𝜑𝐵𝑊)
4 rfovcnvf1od.f . . 3 𝐹 = (𝐴𝑂𝐵)
51, 2, 3, 4rfovcnvd 37319 . 2 (𝜑𝐹 = (𝑔 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))}))
6 fveq1 6102 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
76eleq2d 2673 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (𝑔𝑥) ↔ 𝑦 ∈ (𝐺𝑥)))
87anbi2d 736 . . . 4 (𝑔 = 𝐺 → ((𝑥𝐴𝑦 ∈ (𝑔𝑥)) ↔ (𝑥𝐴𝑦 ∈ (𝐺𝑥))))
98opabbidv 4648 . . 3 (𝑔 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
109adantl 481 . 2 ((𝜑𝑔 = 𝐺) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
11 rfovcnvfv.g . 2 (𝜑𝐺 ∈ (𝒫 𝐵𝑚 𝐴))
12 simprl 790 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑥𝐴)
13 elmapi 7765 . . . . . . . 8 (𝐺 ∈ (𝒫 𝐵𝑚 𝐴) → 𝐺:𝐴⟶𝒫 𝐵)
1413ffvelrnda 6267 . . . . . . 7 ((𝐺 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1511, 14sylan 487 . . . . . 6 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1615elpwid 4118 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ⊆ 𝐵)
1716sseld 3567 . . . 4 ((𝜑𝑥𝐴) → (𝑦 ∈ (𝐺𝑥) → 𝑦𝐵))
1817impr 647 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑦𝐵)
192, 3, 12, 18opabex2 6997 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))} ∈ V)
205, 10, 11, 19fvmptd 6197 1 (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  {copab 4642  cmpt 4643   × cxp 5036  ccnv 5037  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator